ModelOMatic: fast and automated model selection between RY, nucleotide, amino acid, and codon substitution models

Simon Whelan¹,², James E. Allen², Benjamin P. Blackburne², David Talavera²

¹ Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE
² Faculty of Life Sciences, University of Manchester, Manchester, UK

Corresponding author
Simon Whelan
Evolutionary Biology
Evolutionary Biology Centre
Uppsala University
Uppsala 75236
Sweden
Tel: +46-(0)18-4716483
e-mail: simon.whelan@ebc.uu.se

Key words
Phylogenetics; substitution models; model selection; AIC;
Abstract

Molecular phylogenetics is a powerful tool for inferring both the process and pattern of evolution from genomic sequence data. Statistical approaches, such as maximum likelihood and Bayesian inference, are now established as the preferred methods of inference. The choice of models that a researcher uses for inference is of critical importance, and there are established methods for model selection conditioned on a particular type of data, such as nucleotides, amino acids, or codons. A major limitation of existing model selection approaches is that they can only compare models acting upon a single type of data. Here we extend model selection to allow comparisons between models describing different types of data by introducing the idea of adapter functions, which project aggregated models onto the originally observed sequence data. These projections are implemented in the program ModelOMatic and used to perform model selection on 3,722 families from the PANDIT database, 68 genes from an arthropod phylogenomic data set, and 248 genes from a vertebrate phylogenomic data set. For the PANDIT and arthropod data, we find that amino acid models are selected for the overwhelming majority of alignments; with progressively smaller numbers of alignments selecting codon and nucleotide models, and no families selecting RY-based models. In contrast, nearly all alignments from the vertebrate data set select codon-based models. The sequence divergence, the number of sequences, and the degree of selection acting upon the protein sequences may contribute to explaining this variation in model selection. Our ModelOMatic program is fast, with most families from PANDIT taking fewer than 150 seconds to complete, and should therefore be easily incorporated into existing phylogenetic pipelines.
Introduction

The comparison of molecular sequence data in phylogenetics is a statistical problem (Felsenstein 2003; Yang 2006). Modern approaches to the problem use probabilistic substitution models, which describe biological factors affecting molecular evolution through parameterisations of the relative rates of substitution between the characters in a sequence (Yang and Rannala 2012). The parameters of these models are inferred using statistical inference methods, such as maximum likelihood or Bayesian inference (Kosiol, et al. 2006; Yang 2006). These inferential methods are statistically consistent, meaning that as data are added they asymptotically tend towards the correct answer, providing an adequate substitution model is used (Rogers 1997). There has been a substantial research effort to create more realistic substitution models of protein evolution that capture a wide range of evolutionary pressures, including generic evolutionary pressures (Le and Gascuel 2008; Whelan and Goldman 2001), the pressures resulting from protein structure (Liberles, et al. 2012; Thorne, et al. 1996), and selective pressures specific to individual sites (Halpern and Bruno 1998; Lartillot and Philippe 2004).

The importance of substitution models has led to model selection becoming standard practice in phylogenetic studies. Model selection typically follows an information-theoretic approach where a score, such as the Akaike Information Criteria or the Bayesian Information Criteria, is used to measure the fit of a model to a specific data set (Burnham and Anderson 2002; Posada and Buckley 2004; Sullivan and Joyce 2005). These approaches are implemented in the widely used jModelTest (Darriba, et al. 2012; Posada 2008) and ProtTest (Darriba, et al. 2011) programs. Information-theoretic model selection measures the relative fit of a set of models to the observed data, but does not assess whether they those data are likely to have arisen under that model. Several studies have suggested that model adequacy should be assessed alongside model selection (Bollback 2002; Goldman 1993) or that model selection could be conducted based on the performance of those models in estimating the parameters of interest (Brown 2014; Minin, et al. 2003). Both assessment of
model adequacy and performance-based model selection, although not widely used, provide valuable alternative perspectives to the information-theoretic approach.

All model selection methods are dependent on the type of data analysed. Models of amino acid substitution, for example, cannot be directly compared to models of nucleotide substitution because they exist in different state-spaces. More formally, the likelihood function is conditioned upon the state-space of the model (Burnham and Anderson 2002), meaning that likelihoods obtained under 4-state nucleotide substitution models cannot be compared to likelihoods obtained under 20-state amino acid substitution models. The inability to compare likelihoods means we cannot use any standard approaches for model selection across state-spaces, with the problem affecting both maximum likelihood and Bayesian inference because both link observed data to the substitution model through the same likelihood function (Yang 2006).

This limitation has resulted in a dearth of research on the comparison and selection of substitution models between state-spaces. Most studies dealing with model selection do not consider the possibility of choosing between state-spaces, instead concentrating on model selection in one state-space, such as quantifying the performance of model selection on nucleotide sequences with maximum likelihood (Posada and Crandall 2001) and Bayesian inference (Huelsenbeck, et al. 2004), or investigating the fit of amino acid substitution models (Keane, et al. 2006). Some studies have attempted to use simulation or properties of real data to understand the relationship and performance between different state-spaces, with most methods applying these approaches to models of RNA dinucleotide evolution (Gibson, et al. 2005; Letsch and Kjer 2011; Schöniger and von Haeseler 1999; Telford, et al. 2005). An important exception to this pattern is a small number of pioneering works that attempted to describe the statistical relationships between state-spaces. These works include aggregating models from larger state-spaces to smaller state-spaces, such as from codons to amino acids (Yang, et al. 1998), and projecting models from smaller state-spaces to
larger state-spaces, such as the projection of nucleotide models or amino acid models to codon models (Seo and Kishino 2009, 2008; Whelan and Goldman 2004) or the projection of 7-state RNA models to 16-state RNA models (Allen and Whelan 2014).

This study takes a different approach for model comparison across state-spaces by incorporating the aggregation step, where the originally observed sequences are compressed to a lower state-space, into substitution models. Our starting rationale is that all models used to analyse an alignment of sequences must be capable of generating those sequences in their original state-space. In other words, all models should be conditioned on the original sequence data and not on their own aggregated forms of those data. We address this problem by developing adapter functions that project the output of models from the aggregated state-space onto the state-space of the original sequence. The outcome of this approach is a generalised ‘correction’ that allows the comparison of likelihoods obtained from models under any aggregated state-space, providing they originated from the same original sequences. This approach is also used to accommodate the comparison of mixture models across state-spaces, such as the comparison of a nucleotide substitution model with Γ-distributed rates-across-sites to a codon model. To demonstrate the utility of our approach, we develop a model selection approach for choosing the best-fit model to describe protein-coding regions, allowing a wide range of models from many different state-spaces to be compared. These models and their corresponding projections are implemented in a new program called ModelOMatic, which can rapidly select the best model and state-space for performing phylogenetic analysis based on information-theoretic measures. We apply this program to large numbers of families from the PANDIT database (Whelan, et al. 2003; Whelan, et al. 2006) and two phylogenomic data sets from arthropods (Regier, et al. 2010) and vertebrates (Chiari, et al. 2012) to demonstrate its utility and to investigate factors affecting model choice. For PANDIT and the arthropod data set, we find the overwhelming majority of alignments select a version of the LG amino acid substitution model (Le and Gascuel 2008) with Γ-distributed rates across sites.
For the vertebrate data set, nearly all alignments select models from the codon state-space.

Materials and methods
Substitution models

Here we describe general principles of how substitution models describing sequence evolution can be compared between state-spaces. First we define models and sequences in our original and aggregated state-space. We proceed to define the reverse of the aggregation step as a probabilistic process, which allows substitution models acting on the aggregated sequences to be fitted on the original sequences. This approach can be used to create a general likelihood ‘correction’ that accounts for differences between state-spaces, leading to a simple and fast method for model comparison between state-spaces.

Definitions

A phylogenetic substitution model is usually described through the instantaneous rate matrix of a Markov process, \(Q \), which describes the rate of change between two discrete characters \(d_x \) and \(d_y \). We define a Distinct Model by the instantaneous rate matrix \(Q^D \), which describes the rates of change between characters in the Distinct Model state-space, \(D = \{d_1, ..., d_n\} \). The state-space of the Distinct Model is considered to be the original or natural state-space from which the observed sequences were generated. A Compound Model, defined by \(Q^C \), is one that is formed by aggregating \(Q^D \) such that a set of states in \(D \) correspond to a single state in the Compound Model state-space, \(C = \{c_1, ..., c_m\} \). Each state in \(D \) maps to a single state in \(C \), so the relationship between the state-spaces can be expressed through an explicit mapping function such that \(d_x(i) \) links the distinct state \(d_x \) with the compound state \(c_i \), and the reverse mapping whereby the set of \(m \) distinct states contained within the compound state is expressed as \(\bar{c}_i = \{d_1(i), ..., d_m(i)\} \). For clarity and brevity, substitutions between states in \(C \) are indexed \(i \) and \(j \), whereas substitutions between states in \(D \) are indexed \(x \) and \(y \). An aligned set of sequences from \(C \) and \(D \) are referred to...
as X^C and X^D, respectively. Following standard notation, the substitution process of the Compound Model can be parameterised such that $Q^C_{i,j} = S^C_{i,j} \pi^C_j \forall i \neq j$, where $S^C_{i,j}$ corresponds to the ‘exchangeability’ parameter between characters c_i and c_j, and π^C_j the equilibrium frequency of state c_j (Whelan, et al. 2001; Yang 2006). The equilibrium frequencies of the Distinct Model are defined as $\pi^D_{x(t)} = x^D$, where the right hand side provides a convenient shorthand. The totality of parameters from the Compound Model and Distinct Model can be expressed as θ^C and θ^D, respectively. Over time t the probability matrices for transitions between the characters from C and D are expressed as $P^C(t)$ and $P^D(t)$, respectively.

Projecting a single Compound Model onto a Distinct Model state-space

The likelihoods of models with different state-spaces cannot usually be compared because they are conditioned upon different data. In molecular phylogenetics, however, we have a special scenario, where our initial observation is of a set of protein-coding genomic sequences, but it may be convenient to analyse them using a range of aggregated state-spaces, either due to practical reasons, such as computational tractability, or scientific reasons, whereby raw nucleotides do not capture the interdependencies between characters induced by the genetic code (Whelan 2008). This choice between direct modelling and aggregation is illustrated in Figure 1, where the original genomic sequences are in the codon state-space and can be analysed in either the original (codon; Distinct Model) state-space or the aggregated (amino acid; Compound Model) state-space. The likelihood from the codon model, $L(X^{\text{Codon}}|\theta^{\text{Codon}})$, and the likelihood from the amino acid model, $L(X^{\text{AA}}|\theta^{\text{AA}})$ are not comparable because they are conditioned on different data. A similar situation occurs when trying to compare likelihoods from models describing other aggregated state-spaces, such as nucleotides or RY.

To address this problem we propose adding an additional term to the Compound Model likelihood called an adapter function, $P(X^D|X^C)$. This function
effectively provides a modelling component that reverses the aggregation step
used to produce \(C \) from \(D \), allowing each known state in \(C \) to be ‘projected’ onto
the set of possible states in \(D \) from which it could have come. The adapter
function is applied after the Compound Model has generated sequences in \(D \) and
therefore contains no information about the phylogenetic tree. The practical
outcome of adding this adapter function to a Compound Model is that it now
generates sequences in \(D \), allowing the likelihood of the original (Distinct Model)
state-space to be written in terms of the Compound Model likelihood and the
adapter function:

\[
L(X^D; \theta^C) = L(X^C; \theta^C)P(X^D|X^C) \tag{2}
\]

There are several key decisions when trying to create this adapter
function, which we will summarise here, although full details are available in the
Appendix. We propose the simplest form of adapter function possible, which
takes a state \(c_i \) and projects it to one of the corresponding Distinct Model state,
\(d_x(i) \in \tilde{c}_i \), with probability \(P(d_x(i)|c_i) = \frac{\pi^D_{d_x(i)}}{\sum_{d_x \in \tilde{c}_i} \pi^D_{d_x(i)}} = \frac{\pi^C_{d_x(i)}}{\pi^C_{c_i}}. \)
This adapter function term is independent of the likelihood function of the Compound
Model, acts on each character in the data independently, and introduces up to a
maximum of \(|D| - |C|\) free parameters to the model. This approach means the
adapter function can be written in terms of which characters occur in \(X^D \) and \(X^C \)
and the frequency with which they occur:

\[
L(X^D; \theta^C) = L(X^C; \theta^C)\prod_p^{\text{taxa}} \prod_q^{\text{Length}} \frac{\pi^D_{d(p,q)}}{\pi^C_{c(p,q)}} \tag{3}
\]

where \(d(p, q) \) and \(c(p, q) \) are the character states in the original data matrix
from the \(p^{\text{th}} \) taxa and \(q^{\text{th}} \) site for the multiple sequence alignments recoded to
the \(D \) and \(C \), respectively. For example, if character \(d(p, q) \) is the codon TGG, then
under an amino acid state-space the corresponding character \(c(p, q) \) would be
tryptophan (W). In practice, the term \(P(X^D|X^C) \) works as a ‘correction’ for the
likelihood function, adjusting it to explicitly state that the sequences observed in \(X^C \) are an aggregation of those observed in \(X^D \). This projection is illustrated in Figure 1 where the ‘greyed out’ amino acid sequences can be considered an intermediary step when calculating \(L(X^{\text{Codon}}; \theta^{\text{AA}}) \). This projected Compound Model likelihood, \(L(X^D; \theta^C) \), can now be compared directly to the Distinct Model likelihood, \(L(X^D; \theta^D) \), because they are conditioned on the state-space of the original sequence. Moreover, the likelihood from a range of different Compound Models can be compared providing they are all conditioned on the same original sequence state-space.

Projecting mixtures of Compound Models onto a single Distinct Model state-space

The approach described above provides a simple way to project the output of the Compound Model onto the Distinct Model state-space given an observed sequence. This approach is suitable for comparing simple substitution models, but we may want to compare mixtures of Compound Models to models from the Distinct Model state-space. This type of problem takes two forms and detailed explanations of our approaches to enable model comparison under these conditions are provided in the Appendix.

The first approach we examine projects random-effects mixtures of \(k \) Compound Models – where the evolution of each site in an alignment is assigned some form of substitution process, \(\theta^{C(k)} \), according to a probability distribution – to the Distinct Model state-space. An example of this type of comparison occurs when we wish to compare an amino acid (Compound) model with \(\Gamma \)-distributed rates-across-sites to a codon (Distinct) model. In order to perform this projection we need to consider each mixture component of the Compound Model substitution process in turn (e.g. each individual rate category from a \(\Gamma \)-distribution) and provide an adapter function for it. This approach means that we can apply equation (3) to each of the mixture categories in turn and compute their likelihood before mixing them back together.
\[
L(\mathbf{X}^D; \theta^C) = \sum_k P(\theta^{C(k)}) L(\mathbf{X}^C; \theta^{C(k)}) P(\mathbf{X}^D | \mathbf{X}^C) \tag{4}
\]

However, if we assume that \(\pi^j_c\) is the same across the mixture components, then the adapter function and the Compound Model likelihood are independent, which means that they can be separated from one another. Under these conditions the same adapter function is applied to all mixtures and we find that we can separate \(L(\mathbf{X}^D; \theta^C)\) into the ‘correction’ term provided by the projection and the likelihood of the mixture of Compound Models:

\[
L(\mathbf{X}^D; \theta^C) = \left(\prod_p^{\text{Taxa}} \prod_q^{\text{Length}} \frac{\pi^D_{p,q}}{\pi^C_{c(p,q)}} \right) \sum_k P(\theta^{C(k)}) L(\mathbf{X}^C; \theta^{C(k)}) \tag{5}
\]

A similar approach can be taken for the second type of mixture model, where the Distinct Model state-space is made of multiple instances of the Compound Model state-space. For example, the codon (Distinct Model) state-space of a codon is made from three individual instances of the nucleotide (Compound Model) state-space. In these cases, the Distinct Model state-space can be described by a sequential set of Compound Models, where \(\theta^{C(g)}\) is the model at the \(g^{th}\) position. Again we assume \(\pi^j_c\) is the same across the mixture components. In this case we can treat each of the Compound Models as an axis in a multidimensional stochastic process that generates sequence in the Distinct Model state-space. The individual Compound Models do not interact, so the likelihood of the set of Compound Models is the product of their likelihoods:

\[
L(\mathbf{X}^D; \theta^C) = \prod_{C(g) \in D} L(\mathbf{X}^{C(g)}; \theta^{C(g)}) \tag{6}
\]

These two cases represent the majority of applications of mixture models used in phylogenetics and are adequate for providing projections onto most commonly used state-spaces. It is also trivial to generalise our approach to cases where \(\pi^j_c\) varies between mixture components.
Parameterisation of the likelihood correction function

The correction described by equations (3) and (5) requires knowledge of the equilibrium frequencies of the Distinct Model in order to calculate the projected likelihood for the Compound Model. These frequencies should be represented as free parameters in the Compound Model and their presence needs to be accounted for in model comparison (see below). We investigate two parameterisations of $\pi^D_{d_x(i)}$ in the compound model, which represent the two extremes of complexity in all possible parameterisations. The first ‘EQUAL’ approach is the lowest complexity and assumes only knowledge of the frequencies of the Compound Model, so that $\pi^D_{d_x(i)} = \pi^C_1 / |\tilde{c}_1|$. This parameterisation adds no degrees of freedom to the model. The second ‘EMP’ approach represents the most complex scenario, which is to treat the $\pi^D_{d_x(i)}$ parameters as free parameters in the model. One can compute a standard likelihood function for the EMP projection, but for the purpose of model comparison we only need the ML estimates (MLEs), which are exactly expressed as the empirical frequencies of the distinct characters in the data, $\tilde{\pi}^D_{d_x(i)}$, scaled so they reflect the frequencies from the compound model: $\pi^D_{d_x(i)} = \tilde{\pi}^D_{d_x(i)} \pi^C_1 / \tilde{\pi}^C_1$, where $\tilde{\pi}^C_1$ is the empirical compound state frequency. From this formulation it is evident that using MLEs in the EMP projection adds $|D| - |C|$ degrees of freedom to the Compound Model.

Comparison to the Seo and Kishino approach

Conceptually there are similarities between our approach and that of Seo and Kishino (2008; hereafter referred to as SK08), but the comparison between our projection method and SK08 also provides some insight into the similarities and differences between models in different state-spaces. The general SK08 approach reverses the aggregation step in the substitution model by building a codon substitution model from the parameters of the amino acid substitution model. (See Figure 1 for an illustration.) This approach is valid for creating comparable models, but runs into problems regarding its generality. The codon
model produced by SK08 is only one of many possible codon models that would exactly match the amino acid model when aggregated. Seo and Kishino (2008) explore a small subspace of these codon models by parameterising SK08 with μ, but their approach does not provide complete generality since they do not show that the resulting codon models provide better fits than the set of all possible codon models that aggregate to the original amino acid model.

In contrast, our approach reverses the aggregation step at the sequence level. This allows us to use an exact representation of the Compound Model, encompassing all of its properties, and then project its output onto the Distinct Model state-space. This projection is achieved through a simple adapter function that allows the Compound Model to describe substitutions in its own state-space, but give rise to sequences in the Distinct Model state-space. In common with SK08 model projection, the sequence projection given by our adapter function is not unique. However, we suggest that the EQUAL and EMP parameterisations provide a reasonable summary of the different possible parameterisations and are suitable for most model selection applications.

Given these fundamental differences in approach it is intriguing to observe that our likelihood correction in equation (3) is identical to equation (6) from Seo and Kishino (2008). In SK08, equation (6) is obtained by setting the rate of substitution between all characters in \mathbf{D} that are not directly observable in \mathbf{C}, to infinity; in other words $Q^{\mathbf{D}}_{d_x(i),d_y(j)} = \infty$. We provide a brief summary explaining why the process generating sequences from this Distinct Model with infinite rates is exactly equivalent to generating sequences from the Compound Model and projecting it to the Distinct Model state-space. Under the Distinct Model the likelihood of observing the character d_x given a root character of i is simply an element from the $P^{\mathbf{D}}(t)$ matrix. Following Chapman-Kolmogorov we can write:

$$p^{\mathbf{D}}_{d_x(i),d_y(j)}(t + \delta) = \sum_{d_x(k)} p^{\mathbf{D}}_{d_x(i),d_x(k)}(t) \cdot p^{\mathbf{D}}_{d_x(k),d_y(j)}(\delta)$$
The infinite rate between $Q^D_{d_x(i),d_y(j)}$ means that our ability to discriminate between the specific value of $d_x(i)$ and the elements of \bar{c}_i disappears as the process instantaneously reaches equilibrium, meaning that the first term of the right hand side can be written solely in terms of the Compound Model. As ∂ tends to zero, the second term is equivalent to our projection function $P(d_y(j)|j)$, leading to:

$$p^D_{d_x(i),d_y(j)}(t) = p^C_{i,j}(t)P(d_y(j)|\bar{c}_j)$$

which when incorporated into the likelihood function for a set of sequences leads to our equation (3) and equation (6) from Seo and Kishinos (2008). (Full details of this proof are provided in the Appendix.)

Substitution models examined

In total 152 substitution models are compared for each multiple sequence alignment examined. These can be conceptually grounded in 38 foundation models, which can be subdivided by the state-space they examine and the exchangeability and frequency parameters they define (see Table 1). The pair of binary choices of whether models use Γ-distributed rates-across-sites or not (four discrete categories; Yang 1994), and whether they use EQUAL or EMP frequencies in the adapter function provide four additional options for each of the foundation models (38 foundation models \times \{EQUAL\oplus EMP\} \times \{-\Gamma\oplus +\Gamma\} = 152 substitution models).

Model selection

For formal model selection we use the Akaike Information Criterion (AIC: Akaike 1974). We note it is possible to use the corrected version of AIC with the approximation of sample size of Posada and Buckley (2004) or BIC, although our exploratory data analysis finds the choice of information theoretic measure has
minimal effect on model selection for our sequence data. For coding sequences it is appropriate to select models based on their AIC on a 64 character state-space corresponding to the Distinct Model describing all possible nucleotide triplets, including coding and stop codons. For each model we calculate its maximal log-likelihood under the Distinct Model state-space under both the EQUAL and EMP corrections, then calculate an AIC value using an appropriate number of degrees of freedom. Following standard theory the smallest AIC corresponds to the best-fitting model (Burnham and Anderson 2002). The fit of other models is assessed through the ΔAIC statistic, which measures the difference between their AIC and that of the best-fit model. Smaller values of ΔAIC reflect models closer to the best-fit model.

Sequence data and implementation

The first set of sequence data examined is taken from the PANDIT database (version 17.0; Whelan, et al. 2003; Whelan, et al. 2006). We filter the families available in PANDIT according to the following criteria: (i) there must be between 6-100 sequences; (ii) the alignment must be \geq 50 codons in length; (iii) all branches of the DNA PANDIT tree and AA PANDIT tree must be <0.5 in their respective time units; (iv) the coding sequence is compatible with the universal genetic code; and (v) no sequence may have $>85\%$ gap characters in any one sequence at the amino acid level. A small number of families were also rejected due to errors during computation. These filters yielded 3 722 PANDIT families available for further study, with a mean of 18.6 (interquartile range: 8, 21) sequences of length 707.9 nucleotides (327, 921) per family. We also examine two phylogenomic data sets taken from the recent literature: (i) 68 arthropod protein-coding genes from Regier, et al. (2010), where each gene covers an average of 64.9 taxa from a maximum of 80; and (ii) 248 vertebrate protein-coding genes from (Chiari, et al. 2012), where each gene covers an average of 11.4 taxa from a maximum of 16 taxa.
All computation and model comparison is performed in the C++

ModelOMatic program, available through a GNU GPL v3 license at the
googcode repository: https://code.google.com/p/modelomatic/. The program
takes as input a multiple sequence alignment in sequential or interleaved format.
There is also an option to provide a Newick formatted tree or have the program estimate one using the BIONJ algorithm from a Poisson amino acid substitution model (Yang 2007) with empirically estimated amino acid frequencies (‘+F’; see Goldman and Whelan 2002). Extensive comparisons between results obtained under the BIONJ tree with those obtained using the phylm (Guindon and Gascuel 2003) derived ‘amino acid’ tree provided in PANDIT (Whelan, et al. 2003; Whelan, et al. 2006) suggest tree topology has a limited affect on model selection. In total 3,499/3,715 (94.2%) of families showed no difference in the best-fit model between the two topologies. Moreover, for 165 out of the 216 families showing differences, the best-fit model is from the same state-space. A second consideration when estimating MLEs is the degree of rigour with which the parameters are optimised. During the development of ModelOMatic we considered full (slow; high rigour) optimisation and heuristic approximations (fast; lower rigour). The results presented here are from our fast version of the program, but results are very similar for the full version. For the PANDIT database analysis, we find in 3,385/3,719 (91.0%) of families there is agreement between the best-fit model under full and fast versions, and that our heuristics make no change to the selected best-fit state-space in 3,651/3,719 (98.2%) of families. (Note that the total number of families used in these performance comparisons vary due to program failures when using particular heuristics and that the exact details of the nodes used to run the program vary, with processor speeds ranging between 2.27GHz-2.67GHz and memory ranging between 24Gb-504Gb.)

Results
Finding optimal model fit in PANDIT protein domains

To assess the relative fit of RY, nucleotide, amino acid, and codon models, the fast version of ModelOMatic was run on the 3,722 PANDIT families. Table 2
shows how frequently different state-spaces and specific models were chosen as the best-fit model according to AIC. The large majority of families (3,363/3,722) lead to a model describing amino acid substitutions to be selected, followed by some families selecting a codon model (349/3,722), and a small number (10/3,722) selecting a nucleotide model. No families found the RY state-space to provide the best-fit model substitution model. Furthermore, in the overwhelming majority of families (3,632/3,722) the Γ-distributed rates-across-sites version of models provides a better fit than the equal rates-across-sites version.

There is substantial variation in the model chosen for each state-space, albeit with a tendency towards more complex models. For the nucleotide state-space only HKY+Γ or REV+Γ were chosen, suggesting evidence of substantial variation in the rates of substitution between nucleotides. For the amino acid state-space no single model was consistently chosen. The most frequently chosen baseline model was LG, which was selected in 2,412 (64.9%) of families, with an even split between ‘-F’ and ‘+F’ amino acid frequencies of 1,265 and 1,147, respectively. The strong preference for LG could be expected since the LG model was trained on a superset of families from Pfam (Finn, et al. 2010), upon which PANDIT is based. The WAG, VT, rtREV, and JTT models were all selected in over 100 families, whereas other amino acid substitution models were selected much less frequently. These other models include those trained on other genetic codes and genes held on organelle genomes, which might be expected to be subjected to different selective pressures from ‘regular’ nuclear genes. For the codon state-space all four possible descriptions of codon frequencies were chosen, but the majority of families (212/349) that selected the codon state-space also selected an individual frequency for each codon (F64). The total number of families selecting each codon model corresponds with the complexity of the model, such that the more complex the model, the more likely it is to be chosen.
Relative model fit for different state-spaces

Compiling the list of best-fit models provides only a superficial insight into how well different models in different state-spaces describe the data. A model or state-space could have a very competitive AIC for all families, but rarely be the best-fit for any individual family, suggesting a robust performance of the state-space. Figure 2 shows how the best-fit models from each state-space compare to one another. Given the frequency that amino acid models are selected as the best-fit model, the observation that the best-fitting state-space tends to be that of amino acids is to be expected. Figure 2 shows there is, however, a substantial difference in AIC between amino acids and other state-spaces, with median (upper-; lower-quartile ranges) ΔAIC values of 477.3 (213.1; 987.2) for codons, 1,164.8 (620.1; 2,161.8) for nucleotides, and 2,983.5 (1,653.8; 5,734.1) for RY recoding. These ΔAIC values are large and suggest that models describing substitutions in the amino acid state-space capture evolution better than those of the other state-spaces.

One possible explanation for the dominance of the amino acid state-space is that the number of possible amino acid models is so large relative to the number of other models (Table 1). However, at least three factors suggest this is not the case. First, the majority of amino acid best-fit models are dominated by a small number of models. The LG+Γ and LG+F+Γ models account for the best-fit model in 64.6% (2,404/3,722) families, whereas if WAG+F and WAG+F+Γ are included this rises to 74.4% (2,768/3,722) of families. Second, the gap between the best-fit amino acid model and the best-fit model of another state-space is typically very large, suggesting relatively large variations in the amino acid model may be tolerated before another state-space is selected. Finally, there is a tendency for sets of amino acid models to be selected ahead of other state-spaces. In 99.7% (3,354/3,363) of families where an amino acid model is selected, the second choice model is also an amino acid model. Similarly in families where an amino acid model is selected, a high proportion of other amino acid models are selected before another state-space is selected. Around two thirds of amino acid models are selected before any model of another state-space.
is selected in around two thirds of families examined. We also note that these sets of amino acid models also include those trained on different genetic codes and organisms with very different life histories, such as HIV.

Factors affecting model selection and state-space selection

It is of interest to know which factors affect model selection and state-space selection when performing phylogenetic inference. The relative dominance of amino acid substitution models makes it difficult to resolve a clear relationship, but Figure 3 provides evidence of some trends. Families that select nucleotide models tend to have a low total divergence (tree length), whereas families that select codon models tend to have intermediate tree lengths. For all divergence levels, however, the majority of families select amino acid models. In Figure 3, for example, the left-hand-tail of the density function is very shallow, but the total number of families it encompasses is so large so as to dominate the other data types. We also examined other potential relationships between the selected state-space and properties of the sequence data. We find that neither the number of sequences in an alignment nor the number of sites in an alignment is predictive of the model or state-space chosen. Note, however, that the lengths of protein domain alignments tend to be relatively similar, so examining a greater range of alignments lengths may reveal a predictive relationship.

The strength and form of the selective pressures acting upon the coding sequences could also influence the model selected. Neutrally or nearly neutrally evolving proteins, with dN/dS values close to 1.0, could be more difficult to differentiate from DNA sequences, whereas strong selection may result in very different patterns of evolution. We find that the dN/dS rate ratios vary substantially between the sets of state-spaces for the models selected. DNA models tend to be selected for protein families with lower levels of purifying selection, with the median dN/dS value along the sequence equal to 0.8 (range 0.3 – 1.9), whereas codon models tend to be selected for families with a median dN/dS of 0.2 (range 0.1 – 2.0), indicating moderate purifying selection. Amino
acid models tend to be selected for families with stronger purifying selection, with a median dN/dS of 0.1 (range 0.1 – 0.5).

Computation time

Another important consideration in model selection procedures is the amount of computation time required. Figure 4 shows the overall computation time required to run ModelOMatic and select both the best-fit model and state-space. On average the program takes 78.0 seconds to complete (interquartile range: 45.2 to 147.4 seconds), although a small number of families take considerably longer (maximum 1,545.0 seconds). Figure 4 also shows a breakdown of how long different components of the model selection process take to complete. The RY and nucleotide model selection components are extremely fast, taking 0.9 seconds (interquartile range 0.3 to 3.5 seconds) and 5.3 seconds (2.8 to 10.0 seconds), respectively. The amino acid model selection component is a little slower, taking on average 27.8 seconds to complete (15.4 to 51.6), reflecting the larger number of models compared and the increased size of the state-space. The codon model selection is slower still and the most computationally intensive component of the model selection process, taking on average 43.3 seconds to complete (25.5 to 81.8), including a small number of families that take over 800 seconds to complete. This computation time also reflects the substantially larger state-space and the need to estimate more model parameters from the data.

Model selection in phylogenomic data sets

In order to study the generality of the results obtained from PANDIT we also investigate model selection across state-spaces in phylogenomic data sets covering arthropods (Regier, et al. 2010) and vertebrates (Chiari, et al. 2012). The results from both data sets are shown in Table 2. The more taxon rich data set of arthropod genes closely follows the pattern observed for PANDIT: in 65/68 genes an amino acid model is selected and for the majority of these (54/65) that model is LG. In contrast to the PANDIT domains, the majority of the arthropod genes selecting an amino acid model also select the “-F” version of that
model (58/65), suggesting that the amino acid frequencies of those genes are relatively close to the amino acid models examined. The remaining 3 genes select an F64 codon model, which is the most frequent codon model selected by PANDIT families. A Γ-distributed rates-across-sites model is also selected for all genes.

Model selection on the vertebrate data follows a different pattern, with codon models selected for the overwhelming majority of genes (247/248). The distribution of selected codon models closely follows the pattern observed in PANDIT, with genes selecting F64 most frequently (126/247) and progressively fewer genes selecting further simplifications of the model. The single remaining gene selects the VT-F amino acid model, which was rarely selected for PANDIT and not selected for the arthropod genes. In general the best-fit model from the amino acid state-space for these genes shows a different pattern to the arthropod and PANDIT data sets. In total 38 (15.3%) genes select an amino acid model based on a different genetic code or organism, such as an HIV-based model, a mitochondrial model, or a chloroplast model. Moreover, only 28 (11.2%) genes select the LG model, which was selected by the overwhelming majority of alignments in the other data sets. The overall amount of amino acid substitution in the vertebrate genes is also lower than the other two data sets. On average there are only 1.1 expected amino acid substitutions per site for the vertebrate genes, in contrast to 9.6 for the arthropod data and 17.7 for the PANDIT data. The single gene where an amino acid state-space is selected has a tree length of 7.6 amino acid substitutions per site, which is the fifth longest amino acid tree length observed in those data. The majority of genes again select a model with Γ-distributed rates-across-sites (208/248), although this is a smaller fraction than the other two data sets.

Discussion

In this study we have developed a novel and general method for comparing phylogenetic substitution models across state-spaces and used it to
propose a general model selection strategy for protein-coding genes. Previous attempts to achieve this goal have been limited by the inherent difficulties when comparing models from different state-spaces. Under standard conditions, models using different state-spaces are not comparable because they are conditioned on different data. This difference is clear when one considers what happens when those models are used to simulate data. Nucleotide substitution models generate nucleotide sequences and amino acid substitution models generate amino acid sequences, so there is no intersection in the space of sequences they output and they cannot, therefore, be compared.

Previous research on reconciling models from different state-spaces has focussed on trying to create models in one state-space that are analogous to another in one of two ways. The first works by aggregating the larger state-space to the smaller state-space, for example by aggregating codon models to amino acid models (Yang, et al. 1998). If done at the level of the substitution model, this approach loses information about the larger state-space, whereas simply aggregating the sequences can disrupt the underlying assumptions of the model (Kosiol and Goldman 2011). The second approach takes the smaller state-space model and creates an analogous larger state-space model. For example, a nucleotide model (Whelan and Goldman 2004) or amino acid model (Seo and Kishino 2008) can be used to create an analogous codon model. These analogues can generate sequence data that is comparable to the larger state-space model, so their likelihoods are comparable. The problem arises because the analogous model is only one of many possible larger state-space models that could have been created from the smaller state-space model. This means for valid model comparison one would have to be able to choose from the unknown, and potentially very large, set of all possible analogous models.

Our approach is conceptually quite different from previous reconciliations between state-spaces. We recognise that all of our substitution models are attempting to describe the set of sequences we observe prior to any aggregation process. If we wish to transform the state-space of this original
sequence to a smaller, more convenient, state-space then the substitution model we use should explicitly include the aggregation step. This idea is clearer when thinking about simulating data from our models. Imagine we have an original set of codon sequences and we wish to compare them to the simulated output from an amino acid substitution model. We argue that the amino acid substitution model is incorrectly specified unless it explicitly contains the projection step that maps amino acids onto codons, because otherwise it could never have generated the original sequence data. Once this step is included, then the amino acid model is naturally conditioned on the original sequences and comparable to all other models also conditioned upon those sequences. To achieve this aim we introduce simple adapter functions to the likelihood function that project the smaller state-space model onto the larger state-space model after the substitution process has finished. In practice, this projection approach can be used to create a ‘correction’ function for the likelihood of the smaller state-space substitution model that accounts for the aggregation step. The projections we use are not unique, but take a very simple form, which means the two extremities we examine in the EQUAL and EMP forms of correction provide a reasonable summary of all possible projections.

Our adapter functions for correcting likelihoods between state-spaces have been implemented in the model selection tool ModelOMatic, which allows users to choose both the best-fit model and the best-fit state-space under which to analyse their sequence data. To demonstrate the utility of this new tool we have applied it to selected families from the PANDIT database (Whelan, et al. 2003; Whelan, et al. 2006) and two phylogenomic data sets (Chiari, et al. 2012; Regier, et al. 2010). For the PANDIT and the arthropod phylogenomic data set, we find that in the majority of alignments ModelOMatic selects models from the amino acid state-space rather than models from the other state-spaces examined. Describing sequence evolution in the codon state-space provided a better fit to the data in a substantial minority of families for both these data sets. For the vertebrate phylogenomic data set we find that ModelOMatic selected codon models for all but one gene. Across all data sets very few genes (or none)
were best described by the nucleotide (RY) state-space. These observations suggest that, in some cases at least, researchers should consider using newly developed tools for estimating trees using codon models, such as CodonPhyML (Gil, et al. 2013), because they better describe the evolution of the sequences than RY, nucleotide, or amino acid models.

The strong performance of models in the amino acid state-space in two data sets is somewhat unexpected. Models from the RY, nucleotide, and codon state-spaces all have more flexibility in how they describe relative rates due to their parameterisations, whereas amino acid models provide fixed empirically derived estimates of the relative rates of substitution. Moreover, other research has suggested that amino acid models represent an aggregated process, meaning that the process the models are trying to describe is non-Markovian (Kosiol and Goldman 2011). Our examination of the factors affecting model choice on the PANDIT data set suggests that sequence divergence, measured through tree length, is predictive of the types of models that may be selected, which may be linked to the total available information in the sequences from which to infer patterns of substitution. In closely related sequences where there are relatively few non-synonymous substitutions the impact of amino acid properties and the genetic code may be relatively limited. This lack of constraint gives simple nucleotide models the opportunity to be selected because they may capture simple patterns of small numbers of substitutions. At intermediate divergence the number of non-synonymous (and synonymous) substitutions increases. In some of these families it may be that the primary factor affecting amino acid replacement rates is the structure of the genetic code. Moreover, some of the selective pressures acting at the amino acid level may be captured by the relative frequency of codons, which dictate the frequency of amino acids. These factors result in the selection of codon models for some moderately divergent families. For more distantly related families the numbers of synonymous and non-synonymous substitutions grows larger still. For these families each amino acid position may have substituted multiple times over the tree, meaning the selective pressures acting on the physiochemical properties of the amino acid
plays a greater role. Empirical amino acid models may capture many of the properties of these constraints. Moreover, the relatively large number of synonymous substitutions means that the precise identity of the ancestral codon has less influence over which amino acid substitutions may occur through point mutation. These factors combine to lead to the greater dominance of amino acid models in more divergent families.

The arguments above do not explain the overall dominance of amino acid models at all divergence levels in two of our data sets. One explanation is that alignments from PANDIT and the arthropod data sets are solely from relatively divergent proteins and do not include very conserved alignments. Although true, our analyses do span a sufficiently large range of divergences to see variations in the opportunities for nucleotide, codon, and amino acid models to occur. For PANDIT families with moderate divergence, for example, codon models can be chosen, but the majority of these families still select amino acid models. Similarly, the genes selecting codon models tend to have relatively short tree lengths, but many other genes with similar divergence select amino acid models. An alternative explanation is that describing sequence evolution in the amino acid state-space allows the model to capture the physiochemical properties of amino acid residues. These properties may represent the strongest and most consistent selective pressures acting on a protein during its evolution, so an explicit description of them provides a better fit to the overall evolutionary process. RY and nucleotide models account for these pressures by spatial rate variation (Yang 1994), whereas the codon models examined capture differences in rates between synonymous and non-synonymous substitutions, but not the rate differences between non-synonymous sites attributable to the protein structure. It would therefore be interesting to know how well classes of empirical codon models (Kosiol, et al. 2007) would perform relative to amino acid models and the codon models based on the formulation of Goldman and Yang (1994). To further test this hypothesis, the likelihood projection approaches described here would also allow the direct comparison of amino acid models with mechanistic codon models of protein evolution that explicitly

The results from the vertebrate phylogenomic data set are markedly different, with the majority of genes selecting models in the codon-state space. We conjecture several mutually compatible factors that may contribute to explaining the difference between the state-space selected for these data and the arthropod and PANDIT data sets. The vertebrate genes tend to consist of relatively few closely related sequences so the structure of the genetic code plays a substantial role in determining what amino acid substitution can occur. The small number of sequences may compound this effect, both by lowering the overall amount of amino acid substitution occurring and by reducing the number of observations from which to discriminate between codon and amino acid models. The nature of the selective constraint acting on the vertebrate sequences may also play an important role. The procedure used to obtain 1:1 orthologs and then select specific regions of those genes suitable for phylogenetic analysis may tend to select slowly evolving sites from highly conserved proteins. The strong purifying selection acting on these sites may mean that the patterns of amino acid substitution occurring in these genes are quite different to those that occur in the data used to estimate empirical substitution models. The wide range of different best-fit amino acid substitution models, including those from other genetic codes and organisms, support this suggestion. Our analyses cannot discriminate between these and other possible causes, but in any case the variation in state-spaces selected between the different data sets serves to demonstrate that ModelOMatic may provide a valuable tool when selecting a best-fit model for phylogenetic inference.

The methods described here can select both the best-fit model and the best-fit state-space, but this formal model selection process provides only an information theoretic measure between the generative process that created the data and the model and its state-space (Burnham and Anderson 2002). If all of the considered models and their state-spaces provide a poor description of the
generative process, then the inferences under those models may be biased, and potentially biased in different ways. Ideally model selection should be used in conjunction with methods to measure model adequacy (Goldman 1993; Nguyen, et al. 2011) to ensure that at least some of the models reflect the generative process. These methods are not widely used, in part because they are time-consuming, and more generally because these and related tests show that our current models are inadequate for describing protein-coding regions (Jermiin, et al. 2008; Nguyen, et al. 2011). Alternatively one may use performance-based model selection, where models are chosen or compared by their performance when estimating the parameters of interest (Brown 2014; Minin, et al. 2003).

Given the limitations of substitution models, the measures of model-fit and state-space fit provided by ModelOMatic offer several opportunities for incorporating model uncertainty. One approach is to use model averaging (Burnham and Anderson 2002), which offers two possible options. The first one is to produce bootstrap replicates from a range of models and weight them by the relative fit of those models and their state-spaces (Posada and Buckley 2004). A second option is to perform a series of approximate likelihood ratio tests on the tree estimate (Anisimova and Gascuel 2006), where likelihoods from different models and state-spaces are weighted by their fit to the data. Another approach for incorporating model uncertainty would be to take a Bayesian inference approach, using reverse-jump Markov chain Monte Carlo to sample the model, state-space, the tree and the parameters of the models (Huelsenbeck, et al. 2004; Suchard, et al. 2001).

The state-space projections and aggregations proposed here also offer many immediate opportunities for practical application. If one wishes to ask questions about the evolutionary history of a set of sequences, such as inferring a phylogenetic tree or testing a tree-based hypothesis, then ModelOMatic provides a fast, objective and statistically rigorous way of choosing which state-space and model to use for analyses, albeit with the limitations outlined above. It will also allow researchers to compare the inferences made under different state-spaces. For example, RY-recoding has been proposed as a way to nullify
model misspecification biases in the inferential procedure attributable to compositional heterogeneity (e.g. Phillips, et al. 2001). Formal model selection across state-spaces will allow direct statistical comparisons between (e.g.) RY and competing nucleotide models, allowing authors to judge model-fit and the inferred trees together. ModelOMatic would allow the identification and characterisation of cases where poorer fitting models with smaller state-spaces can provide better tree estimates or whether differences in tree estimates are attributable to the lower information content of smaller state-spaces and their inability to distinguish between competing tree topologies.

Acknowledgements

BPB and DT were funded by the UK Biotechnology and Biological Sciences Research Council on grant codes BB/H000445/1 and BB/H006818/1, respectively. JA was funded by a NERC CASE PhD studentship, in collaboration with EMBL-EBI, UK.

References

Chiari Y, Cahais V, Galtier N, Delsuc F 2012. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology 10: 65
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6: 29

Nguyen MAT, Klaere S, von Haeseler A 2011. MISFITS: evaluating the goodness of fit between a phylogenetic model and an alignment. Molecular Biology and Evolution 28: 143-152

Posada D, Buckley TR 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793-808

Whelan S 2008. The genetic code can cause systematic bias in simple phylogenetic models. Philosophical Transactions of the Royal Society B-Biological Sciences 363: 4003-4011

Figure Legends

Figure 1 Schematic overview of modelling strategies. Given a set of observed sequences in the codon (Distinct Model) state-space we can take several approaches for analysing them. The simplest is the *direct* approach, which models their evolution in their original state-space. The other common approach is to *aggregate* the sequences to an amino acid (Compound Model) state-space and model their evolution in this reduced state-space. The models used by *direct* and *aggregate* cannot be compared because they are conditioned on different types of data (indicated by emphasised lines). The *SK08* method (Seo and Kishino 2008) uses an amino acid model to build a set of codon models. Model comparison takes place through these codon models, which include changes not observable in the amino acid model (greyed out to indicate the amino acid model is not used in comparison). Our new *projection* method rewrites the amino acid model to describe evolution by substitutions in the amino acid state-space followed by a projection from amino acids to codons. This new amino acid model is conditioned on the codon state-space and is directly comparable to codon models.

Figure 2 Relative fit (ΔAIC) of the best-fit model from each state-space compared to the overall best-fit model in the PANDIT database.

Figure 3 Relationship between the logged phylogenetic tree length (sum of branch lengths) and selection of a model state-space for families from the PANDIT database. Nucleotide models (dotted line) tend to be selected for short trees, whereas codon models (short-dashed line) tend to be selected for intermediate trees. Amino acid models tend to dominate the selection process (long-dashed line) and their distribution closely follows that for all families (solid line).
Figure 4 Time taken to complete runs of ModelOMatic (Total) and its individual components (RY, NT, Codon and AA) on the PANDIT database using a Linux cluster at the University of Manchester. Boxes show the interquartile ranges. The lines within the boxes are the median values for each total or partial run. The notches around the medians represent the 95% confidence intervals for the median. Whiskers extend up to 1.5 times the interquartile range. Values above these limits are considered outliers, and are not plotted.
Table 1: Phylogenetic models examined in this study

<table>
<thead>
<tr>
<th>State-space</th>
<th>Foundation models*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (total=38)</td>
<td>Size</td>
</tr>
<tr>
<td>RY (1)</td>
<td>2</td>
</tr>
<tr>
<td>Nucleotide (5)</td>
<td>4</td>
</tr>
<tr>
<td>Amino acid† (14x2=28)</td>
<td>20</td>
</tr>
<tr>
<td>Codon (4)</td>
<td>61</td>
</tr>
</tbody>
</table>

* Naming convention where possible follows that available in PAML 4 (Yang 2007).

† All amino acid models have the additional option of ‘+F’ empirical frequencies (Goldman and Whelan 2002)
Table 2: Distribution of best-fit models across PANDIT families

<table>
<thead>
<tr>
<th>State-space</th>
<th>Model</th>
<th>Number of times best-fit model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-Γ</td>
<td>+Γ</td>
</tr>
<tr>
<td>RY</td>
<td>RY</td>
<td>0</td>
</tr>
<tr>
<td>DNA</td>
<td>HKY</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td>Amino acid</td>
<td>(-F;+F)</td>
<td>(-F;+F)</td>
</tr>
<tr>
<td></td>
<td>LG</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5;3)</td>
</tr>
<tr>
<td></td>
<td>WAG</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3;2)</td>
</tr>
<tr>
<td></td>
<td>VT</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3;6)</td>
</tr>
<tr>
<td></td>
<td>rtREV</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0;1)</td>
</tr>
<tr>
<td></td>
<td>JTT</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0;3)</td>
</tr>
<tr>
<td></td>
<td>BLOSUM</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6;4)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1;2)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(18;21)</td>
</tr>
<tr>
<td>Codon</td>
<td>EQU</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>F1x4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>F3x4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>F64</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(18;21)</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>
Table 3: Distribution of best-fit models across phylogenomic data sets

<table>
<thead>
<tr>
<th>State-space</th>
<th>Model</th>
<th>Regier et al. (2010) 68 genes</th>
<th>Chiari et al. (2012) 248 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-Γ</td>
<td>+Γ</td>
</tr>
<tr>
<td>Amino Acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dayhoff</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>JTT</td>
<td></td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7;2)</td>
</tr>
<tr>
<td>WAG</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1;0)</td>
</tr>
<tr>
<td>VT</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG</td>
<td></td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(50;4)</td>
</tr>
<tr>
<td>Codon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQU</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F1x4</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F3x4</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F64</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Aggregation
Original sequence is translated to amino acids and modeled in that state-space

Direct
Substitutions modeled in the original sequences’ state-space

Projection (new)
Substitutions modeled in the aggregated state-space, but model fitted to the original state-space through projection

SK08
New substitution models in the original sequences’ state-space are created from a model in the aggregated state-space

Comparable models
Relative frequency of domain families

```
Log_{10}(Tree Length)
```

- All
- Nucleotide
- Codon
- AA