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This paper will attempt to resolve some controver-
sies about the effects of missing data on phylogenetic
analysis. Whether missing data are generally prob-
lematic is a critical issue in modern phylogenetics,
especially as wildly different amounts of molecular data
become available for different taxa, ranging from en-
tire genomes, to single genes, to none (e.g., fossils).
Our perception of the impact of missing data (or lack
thereof) may strongly influence which taxa and charac-
ters we include in a phylogenetic analysis (Wiens 2006)
and may lead to a diversity of serious errors. For ex-
ample, if we think that missing data are problematic
when they are not, then we may exclude taxa and char-
acters that would otherwise benefit our analyses, given
the abundant evidence that increasing numbers of both
taxa and characters can potentially improve the accu-
racy of phylogenetic analyses (e.g., Huelsenbeck 1995;
Rannala et al. 1998; Poe 2003), where accuracy is gen-
erally defined as the similarity between the estimated
tree and the correct, known phylogeny. In contrast, if
missing data cells are themselves intrinsically problem-
atic (e.g., Huelsenbeck 1991), including taxa or charac-
ters with many missing data cells may lead to inaccurate
phylogenetic estimates.

Several studies have explored how missing data may
impact phylogenetic analyses, using both empirical and
simulated data. Many simulation and empirical stud-
ies now suggest that it is often possible to include taxa
that have large amounts of missing data without ill ef-
fects (e.g., Wiens 2003b; Driskell et al. 2004; Philippe
et al. 2004; Wiens et al. 2005; Wiens and Moen 2008;
Lynch and Wagner 2010; Thomson and Shaffer 2010;
Wiens, Kuczynski, Townsend, et al. 2010). However, a
recent simulation study (Lemmon et al. 2009) suggested
instead that missing (“ambiguous”) data are generally
problematic for phylogenetic analysis and implied that
these previous simulation and empirical studies are
therefore incorrect. They justified their study based on
the grounds that previous studies were supposedly in
conflict about the impacts of missing data (p. 131).

In this paper, we will show that the paper by Lemmon
et al. (2009; LEA hereafter) is problematic for several
reasons. First, despite their statement that previous
studies are in conflict, most simulation and empirical re-
sults on missing data can be easily explained within an

existing theoretical framework (Wiens 2003b). Further-
more, many contradictory studies suggesting that miss-
ing data are not generally problematic for Bayesian and
likelihood analyses (given some assumptions) were not
addressed by LEA. Second, the sweeping negative con-
clusions of LEA are not necessarily supported by their
results. LEA find missing data to be problematic pri-
marily when using sets of invariant or saturated char-
acters and/or when obvious rate heterogeneity is ig-
nored. Their results do not support the idea that missing
data generally lead to incorrect inferences about topol-
ogy when informative data are analyzed with appropri-
ate methods. We conduct new simulations under more
realistic conditions, and these results show no evidence
that missing data generally lead to inaccurate Bayesian
estimates of phylogeny. In fact, we show that the prac-
tice of excluding characters simply because they contain
missing data cells may itself reduce accuracy. We rean-
alyze the “manipulated” empirical example from LEA
and find that, without these artificial “manipulations”
of the data, their conclusions are not supported. We also
analyze eight empirical data sets, each containing many
taxa with extensive missing data. We show that these in-
complete taxa are consistently placed into the expected
higher taxa, often with very strong support. Overall, our
results confirm previous simulation and empirical stud-
ies showing that taxa with extensive missing data can
be accurately placed in phylogenetic analyses and that
adding characters with missing data can be beneficial
(at least under some conditions). We conclude by point-
ing out important areas for future research on the topic
of missing data and phylogenetic analysis.

A GENERAL FRAMEWORK FOR INTERPRETING
SIMULATION AND EMPIRICAL RESULTS

There are two main ways that missing data might
be added to a phylogenetic analysis, either through the
addition of incomplete characters or incomplete taxa.
For example, imagine having data from two genes for
a given genus of organisms, in which the first gene has
been sequenced for all 10 species and the second gene
has been sequenced for only 5 species. Given this situ-
ation, one might (a) analyze only the first gene for all
10 species and then decide whether or not to (b) add
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the second gene (adding incomplete characters that are
missing data for 5 of the species). Or, one might (c) ana-
lyze only the 5 species having data for both genes, and
then decide whether or not to (d) add the 5 species lack-
ing data for the second gene (adding incomplete taxa
that are lacking data for the first gene). Note that (b)
and (d) are effectively identical. Most of the literature
on missing data has focused on whether to include taxa
lacking data for some characters (c versus d). LEA did
not actually address this question, but they imply that
their results overturn earlier studies that did (e.g., p.
141). Below, we briefly review previous studies on in-
complete taxa (treating fossil studies collectively rather
than individually), and address incomplete characters (a
vs. b) in our simulations and under “Areas for Future
Research.”

Rather than being in conflict, we argue that most of
the diverse empirical and simulation studies on missing
data are largely consistent when viewed in light of the
hypothesis that highly incomplete taxa can potentially
be accurately placed if enough informative characters
are sampled overall (Wiens 2003b). Thus, the appar-
ent impacts of extensive missing data in these studies
fall along a continuum (from negative to inconsequen-
tial) based on the overall number of characters in the
analysis.

The issue of missing data first became prominent
in association with parsimony analyses of morpho-
logical data for fossil taxa (e.g., Donoghue et al.
1989; Platnick et al. 1991). These studies have found
incomplete taxa to be problematic in some cases
(e.g., generating many equally parsimonious trees
and poorly resolved consensus trees; Novacek 1992;
Wilkinson 1995; Anderson 2001) but not others (e.g.,
Kearney 2002; Cobbett et al. 2007). However, these stud-
ies included relatively few characters (up to a few hun-
dred, but often <100). The simulations of Huelsenbeck
(1991) included only 100 characters and found highly
incomplete taxa (75% missing data) were often prob-
lematic. Wiens and Reeder (1995) found that including
highly incomplete taxa (75%) reduced accuracy some-
what in parsimony analyses of known viral phyloge-
nies, but their two data sets (sequence and restriction
site) each included less than 100 parsimony informa-
tive characters. Dragoo and Honeycutt (1997) showed
that their parsimony analyses were largely insensitive
to missing data with ∼1500 characters (three mitochon-
drial genes for carnivoran mammals), with no effect on
topology when one or two of the three genes were re-
placed with missing data cells, but that some resolu-
tion was lost when some taxa had ∼87% missing data.
The simulations of Wiens (2003b; see also 2003a) showed
that highly incomplete taxa (e.g., 90% missing data) can
be accurately placed given enough characters in parsi-
mony, likelihood, and neighbor-joining analyses, but the
exact level of character sampling needed depends on
the phylogenetic method, distribution of missing data
among characters, and branch lengths (e.g., accurate
placement is more difficult with neighbor joining and
parsimony, when missing data are randomly distributed

among taxa, and when overall branch lengths are long
and/or characters evolve rapidly).

Dunn et al. (2003) performed a limited set of simula-
tions based on their data for 2293 rapidly evolving mi-
tochondrial DNA characters for mylobatiform fish and
found that the impact of incomplete taxa varied depend-
ing on the method, from negative (parsimony) to none
(likelihood), relative to simulations in which all taxa
were complete. Philippe et al. (2004) included 30,399
characters from 129 protein sequences among eukary-
otes and found that highly incomplete taxa were placed
with strong support in their empirical likelihood analy-
ses (i.e., the four most incomplete taxa had 56%, 60%,
61%, and 76% missing data, and the likelihood boot-
strap values placing them with their sister taxa are re-
spectively 100%, 92%, 98%, and 95%). They also found
high accuracy in their simulations based on those data
(e.g., 100% accuracy for all nodes when 50% of the data
were missing, and 89% mean accuracy across nodes
when 90% were missing). Driskell et al. (2004) examined
DNA data sets with very large numbers of characters
(469,497 for metazoans and 96,698 for green plants) and
extensive missing data (92% and 84%, respectively) and
found that highly incomplete taxa were placed in clades
expected from previous taxonomy with strong support
based on parsimony bootstrapping. Wiens et al. (2005)
included 3519 (mostly DNA) characters for treefrogs
and showed that highly incomplete taxa were placed in
the expected clades with very strong support by parsi-
mony and Bayesian analyses (e.g., 10 species with >90%
missing data each were all placed in the expected clades,
with monophyly of these clades each supported with a
Bayesian posterior probability (Pp) of 1.00). Other recent
empirical studies (described below) have also shown
that highly incomplete taxa are placed in the expected
clades with strong support, and most of these studies in-
cluded >4000 characters each (e.g., Lynch and Wagner
2010; Thomson and Shaffer 2010; Wiens, Kuczynski,
Townsend, et al. 2010).

Wiens (2005) used simulations to show that adding
highly incomplete taxa (i.e., 90% missing data) could
be as effective as complete taxa in rescuing likeli-
hood and Bayesian analyses from long-branch attrac-
tion, even when the models utilized in these analyses
were misspecified (i.e., among-site rate heterogeneity
and transition–transversion bias were simulated but not
included in the estimation models), given a sample of
1000 characters. The simulations of amino acid data by
Hartmann and Vision (2008) showed reduced accuracy
with extensive missing data for parsimony, likelihood,
and neighbor-joining analyses, but only included 500
characters. Wiens and Moen (2008; their fig. 2) used sim-
ulations to show that highly incomplete taxa could be
accurately placed in Bayesian analyses given enough
characters (e.g., 2000), even when rate heterogeneity and
substitution bias were simulated but not included in the
Bayesian model.

In summary, all of these simulation and empirical
studies seem to fit into this common framework, with
highly incomplete taxa being potentially problematic
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when the overall number of characters is small and
generally unproblematic when the number is large. This
common framework seems to apply to all phylogenetic
methods, not simply likelihood and Bayesian analysis.

The results of many of these studies contradict the
conclusions of LEA but were not mentioned by them,
including the ones that addressed the impact of missing
data on likelihood and Bayesian analyses (e.g., the re-
sults of Philippe et al. 2004; Wiens 2005; Wiens et al. 2005
were not mentioned, and the latter two studies were not
cited). For example, LEA conclude that “in both ML and
Bayesian frameworks, among-site rate variation can in-
teract with ambiguous data to produce misleading es-
timates of topology” (p. 130) and that estimation be-
comes problematic “when rate variation across sites is
not properly modeled” (p. 141). But the simulation stud-
ies by Wiens (2005) and Wiens and Moen (2008) showed
accurate estimation of topologies with incomplete taxa
by Bayesian and likelihood methods when rate varia-
tion was simulated but completely ignored.

PROBLEMATIC SIMULATIONS AND CONCLUSIONS OF
LEMMON ET AL. (2009)

LEA analyzed a very limited set of simulated con-
ditions and found results that were seemingly discor-
dant with those of other simulation studies of the same
topic. Yet, they make sweeping conclusions from their
results (e.g., that their results have implications for “all
analyses that rely on accurate estimates of topology
or branch lengths”, p. 130). They also imply that their
results overturn those of previous studies. It is there-
fore important to look at what they did and found more
closely.

LEA examined the four-taxon case, with the sim-
plest model of sequence evolution (Jukes–Cantor), and
equal branch lengths (given that an unrooted tree is es-
timated). For each set of conditions, they simulated two
data sets (Gene A and Gene B), one with complete data
for all taxa and characters, and another lacking data for
all characters for two taxa. These genes were simulated
under either the same or different rates of change. They
then evaluated Bayesian Pp for the single internal node
for Gene A alone and for Gene A and B combined. For
maximum likelihood, they evaluated the frequency with
which this clade was correctly reconstructed. They as-
sumed that the combined data would give the same re-
sults as Gene A alone because data were only present in
two of the four taxa for Gene B (making Gene B uninfor-
mative under the parsimony criterion, but note that this
is not necessarily true for likelihood or Bayesian analy-
sis, see below).

They found that Bayesian Pp for the combined data
sometimes differed from the observed values based on
Gene A alone (but for maximum likelihood a compara-
ble result only occurred when branch lengths were ar-
bitrarily fixed to nonzero values). They refer to these
differences as “bias.” In some cases, these biases ap-
pear to be problematic, as when Pp approaches zero
for the true tree (such that the true phylogeny is not

estimated). Similarly, they found some cases where Pp
was very high for the true tree, even though both data
sets were effectively invariable. They suggested that
these biases were related to the Bayesian star-tree para-
dox (e.g., Lewis et al. 2005), the tendency for Bayesian
analysis to strongly favor one tree when there is little in-
formation with which to choose among trees (regardless
of missing data). However, they found virtually none
of these extreme biases unless the characters were ef-
fectively invariant or “saturated” (i.e., used by LEA as
meaning so variable so as to be effectively uninforma-
tive), and unless rate heterogeneity between genes was
simulated and then ignored by failing to partition by
genes. The only exception we find is in their fig. 4, for
one set of conditions with very high rates in both genes
and data missing in sister taxa. Thus, their results do not
support their sweeping generalizations about the neg-
ative impact of missing data, especially for conditions
likely to be encountered by most empirical systematists.
This presumably explains why so many previous simu-
lation and empirical studies contradict their conclusions
about the negative impact of missing data on Bayesian
and likelihood analyses (see above).

In some cases, they show that combined data Pp differ
moderately from those for Gene A alone (e.g., their fig.
4, when rate of Gene A is low). However, arguing that
these Pp are “biased” assumes that Gene B has no in-
fluence on topology estimation whatsoever (i.e., Pp for
the combined analysis should be the same as for Gene
A alone). Although this is true for parsimony, it is not
necessarily true for Bayesian or likelihood analyses. For
example, if Gene B has no influence on Bayesian esti-
mates of topology (which are based on Pp), then how
can it influence Pp at all? Clearly, the initial assump-
tion that incomplete characters in Gene B have no im-
pact cannot be fully correct. Furthermore, finding that
combined data Pp differ from Pp for Gene A is not di-
rect evidence that combined data Pp yield biased esti-
mates of accuracy (i.e., in this context, the probability
that the clade is correctly reconstructed by the method
under a given set of conditions). Demonstrating bias
would require directly examining the relationship be-
tween accuracy (the probability that the clade is cor-
rectly reconstructed by Bayesian analysis of Genes A
and B combined) and the combined-data Pp for these
conditions (for studies examining the relationship be-
tween Bayesian Pp and accuracy see, e.g., Wilcox et al.
2002; Alfaro et al. 2003; Huelsenbeck and Rannala 2004).
LEA did not directly examine the relationship between
accuracy and Pp when missing data are added, and so
for these nonextreme conditions, their statements about
“bias” caused by missing data are not actually based on
any direct evidence.

In summary, the results of LEA suggest that miss-
ing data are primarily problematic when utilizing
uninformative characters and/or when failing to par-
tition clearly heterogeneous data sets, conditions that
may not be routinely encountered by most systema-
tists. This is not to say that we think that data sets with
missing data always yield accurate phylogenies with
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unbiased support values, but rather that the simulation
results of LEA can have a very different interpretation
from their sweeping negative conclusions, if one sim-
ply considers which of their results are relevant to what
phylogeneticists actually do.

Another critical issue is the addition of sets of charac-
ters with data for only two species, which are expected
to have little impact on the analysis (and which pre-
sumably would not be used by empirical systematists).
It is unclear if their results are specific to adding only
two species or if they also apply to larger numbers of
species. We have therefore performed new simulations
to address the relevance of the results of LEA to larger
numbers of taxa.

NEW SIMULATIONS

Methods

We addressed how adding data from a gene with in-
complete taxon sampling to the one with complete taxon
sampling influences the accuracy of Bayesian phyloge-
netics. Simulation methods generally followed Wiens
and Moen (2008). We simulated 16-taxon phylogenies
that were either fully asymmetric or symmetric. Fol-
lowing LEA, we simulated DNA data with the Jukes–
Cantor model with equal branch lengths across the tree.
We generally used 500 characters per gene, but also sim-
ulated 100. Data set 1 had all characters for all 16 taxa.
For Data set 2, we simulated the complete data, and then
a set of taxa was randomly selected in each replicate
to have all their characters replaced with missing data
cells. In one set of simulations, eight taxa were incom-
plete in Data set 2 (one way of generalizing the de-
sign of LEA to larger numbers of taxa). In another set
of simulations, 14 taxa were incomplete, leaving only 2
taxa in Data set 2 with nonmissing data (an alternate
way of generalizing the design of LEA to more taxa).
Data were simulated under a broad range of rates of
change in each data set, from very low (probability of
change in a given character along a given branch of
0.0001) to relatively high (0.50), and six intermediate
rates (0.001, 0.01, 0.10, 0.20, 0.30, 0.40). Initial analyses
on the asymmetric tree showed that the most extreme
rates gave relatively low accuracy for these conditions
(30% of tree or less resolved correctly). We simulated
both equal rates in each data set and many unequal rates
(Fig. 1), but not every possible combination of rates.
We analyzed 100 replicates for each set of conditions.
We analyzed Data set 1 alone and then analyzed data
sets 1 and 2 combined. Data sets were analyzed using
MrBayes v3.1.2 (Huelsenbeck and Ronquist 2001), as-
suming a Jukes–Cantor model with a parameter for un-
equal rates of change among sites (gamma), and other
options set to default values. Importantly, combined
analyses were partitioned, allowing a different value
for gamma in each data set. Analyses were run for
50,000 generations each, sampling every 100 genera-
tions, and excluding the first 10,000 generations as burn-
in. These settings provide adequate tree searches for

these conditions (Wiens and Moen 2008). We evaluated
accuracy for each replicate as the proportion of resolved
nodes in the majority-rule Bayesian tree that are shared
with the known, true topology, and overall accuracy (for
a given set of conditions) is based on the mean for 100
replicates. This measure of accuracy is used in many
previous simulation studies (e.g., Wiens 2003b; Wiens
and Moen 2008); other measures are certainly possi-
ble, but they should also reflect the similarity between
the true and estimated trees averaged across replicates.
We did not directly evaluate Pp support for individual
clades, but a clade will not be resolved unless its Pp is
>0.50, and LEA did not directly examine the relation-
ship between accuracy and Pp either.

Results

We find that across a broad range of conditions
(Fig. 1), adding the data set consisting of 50% missing
data (8 of 16 taxa incomplete) either increases or has
no effect on accuracy, relative to analyzing the com-
plete data set alone. Although the increases are typically
small, under some conditions, the relative increase can
be >20% (e.g., 0.49 vs. 60). These increases in accuracy
may occur when the rates of change in the two data sets
are equal, or when they are very unequal as well. When
the added data set has only two complete taxa (as in the
simulations of LEA), accuracy may be slightly higher or
slightly lower than Data set 1 alone, and is consistently
within 0.05. These latter results suggest that adding sets
of characters with only two species has little influence
on the overall accuracy of analyses with larger num-
bers of taxa, and that the design and results of LEA do
not generalize to more realistic conditions.

Discussion

Contrary to the conclusions of LEA, we find no evi-
dence that adding sets of characters with extensive miss-
ing data leads to misleading estimates of Bayesian phy-
logeny or support values (i.e., only clades with Pp > 0.50
are supported). Importantly, our results suggest that
under some conditions, failing to add characters with
missing data can lead to reduced phylogenetic accuracy.
Thus, being overly cautious about excluding characters
simply because they have missing data can lead to re-
duced phylogenetic accuracy. This is a critical point that
LEA do not discuss.

Our simulation methods are not identical to those
of LEA. For example, we assume that researchers will
not choose to analyze data sets that completely lack
phylogenetic information due to rates that are too fast
or slow (and so we do not simulate these conditions,
but we do simulate branches that are both extremely
long and extremely short). We also assume that most
researchers will partition data sets evolving at differ-
ent rates. But most importantly, our results suggest
that the misleading Bayesian estimates noted by LEA
do not necessarily occur under slightly more realis-
tic conditions (e.g., more taxa, partitioned data, and
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FIGURE 1. Results of simulations showing the impact of adding sets of characters with missing data on the accuracy of Bayesian phyloge-
netic analysis. Within each square, the top number is accuracy for Data set 1 alone, whereas the bottom number is for combined analysis of Data
sets 1 and 2. Results on the left are for simulations in which Data set 2 has eight complete taxa and the right shows results in which Data set 2
has only two complete taxa.

use of variable characters). As one example, LEA sug-
gest that Bayesian Pp may be strongly influenced by
whether the taxa with nonmissing data are sister or
nonsister taxa, but this simple division becomes un-
clear when additional taxa are included. For example,
given a five-taxon tree (A, B) (C (D, E), with missing
data in species C and D, nonmissing data are simulta-
neously present in both sister taxa (A, B) and nonsister
taxa (A, E).

These simulations are also very limited and still very
far from realistic. Many parameters that could have been
varied were not (e.g., more complex substitution mod-
els, variation in rates within genes), in order to make the
results more comparable with those of LEA (see instead
Wiens 2005; Wiens and Moen 2008). Perhaps the most
important oversimplification is the use of equal branch
lengths throughout the tree. In order to address how
missing data influence Bayesian and likelihood analyses
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under fully realistic conditions, we also perform analy-
ses of eight empirical data sets. Before we do that, we
briefly address the empirical example offered by LEA.

Reexamining the Manipulated Empirical Example of LEA

LEA analyzed an empirical data set but again made
many methodological choices that make these data very
different from those analyzed by empirical systema-
tists. They analyzed data from a single mitochondrial
gene from eight species of plethodontid salamanders
(but for which entire mitochondrial genomes were avail-
able; Mueller et al. 2004), deliberately analyzing a very
small number of characters. We could not find an ex-
planation for why these particular characters and taxa
were chosen. They then added a second data set con-
sisting of missing data for six of the eight species and
“manipulated empirical data” for the other two. These
added, nonmissing data consist of resampled sites from
the same gene for the same species, selected to be ei-
ther all invariant or all variable between the two species.
Although they found that adding this second set of
characters influenced Bayesian and likelihood estimates
of topology, support, and branch lengths, this analysis
raises many questions about its design. Why not use ac-
tual data (e.g., another gene) instead of resampling sites
from the same gene? Why only variable and invariant
sites? To what extent are their results an artifact of these
methodological choices?

We addressed this latter question using very similar
empirical data, and our results offer a dramatic contrast
to those of LEA (Fig. 2). We downloaded the same 16S
data, but instead of adding only invariant or variant
sets of characters from the same gene, we added un-
manipulated data from another gene (the widely used
cytochrome b; again from Mueller et al. 2004) to the
same species to which LEA added data. Clearly, adding
another gene is more relevant to what empirical sys-
tematists actually do. Instead of finding that “ambigu-
ous characters can strongly bias estimates of topologi-
cal support and branch lengths” (p. 139) we find that
Bayesian and likelihood estimates of topology, support,
and branch lengths are almost identical after adding cy-
tochrome b with data missing in six species (see Fig. 2
legend for methods). As in their simulations, it appears
that the results of LEA reflect artifacts of adding invari-
ant and saturated characters (and failing to partition
data sets), and therefore may have limited relevance to
most empirical studies.

Apart from their example involving “manipulated”
empirical data, LEA do not show any empirical stud-
ies in which missing data seem to be problematic for
Bayesian or likelihood methods. Note that on p. 142,
LEA state “One of us (K.S.-H.) has come across such
an example of discordance among gene trees in empir-
ical data from North American fireflies. Once ambigu-
ous sites were excluded from the analysis, gene tree
congruence increased substantially (Stanger-Hall et al.
2007).” However, the only references to missing data in

that paper were the following quotes: “However, due
to stretches of missing data in individual taxa (due to
differences in primer binding and sequencing success)
and the possibility that these unduly influence the phy-
logenetic analysis (Lemmon et al. unpublished data),
the final alignment was reduced to 1906 bp.” (p. 36)
and also (p. 42) “it seems to have a significant effect on
the outcome of a ML and/or Bayesian analysis (Lem-
mon et al., unpublished data). This led us to exclude
DNA segments with missing data for more than one
taxon from our final alignment.” Thus, the Stanger-
Hall et al. (2007) paper does not contain the empiri-
cal results that LEA state that it does, only references
to LEA.

NEW RESULTS FROM EMPIRICAL DATA SETS

The problem of missing data is something that em-
pirical phylogeneticists may encounter every day. LEA
state that the supposed negative impacts of missing data
on phylogenetic analysis are relevant to “all studies”
that estimate and use phylogenies (p. 130). If this were
true, we would expect to see widespread negative im-
pacts in empirical analyses that include extensive miss-
ing data. We have previously described empirical stud-
ies that showed evidence that such impacts can be small
or nonexistent (e.g., Philippe et al. 2004; Wiens et al.
2005), specifically for likelihood and Bayesian analyses.
Here we present analyses of eight additional empirical
data sets that show similar patterns.

Obviously, the true phylogeny is unknown in most
empirical data sets. However, one can make predic-
tions about how methods will perform with real data
given the results of simulations. It is not immediately
clear what specific empirical predictions can be de-
rived from the simulations of LEA. Nevertheless, they
state that extensive missing data may “positively mis-
lead” (p. 143) estimated topologies in likelihood and
Bayesian analyses. If this were the case, then we pre-
dict that highly incomplete taxa will be placed in clades
that appear to be incorrect based on previous taxon-
omy and systematic research (i.e., assessing accuracy
based on congruence). In contrast, if the hypothesis
of Wiens (2003b) is correct, and if sufficient characters
have been sampled, then we expect that incomplete taxa
will be placed in the expected higher taxa (e.g., genera,
families), and with strong support. In addition, there
should be strong support for the localized placement
of these species within these higher level taxa (if suffi-
cient characters were sampled). Following Wiens et al.
(2005), we test for a negative relationship between lo-
calized clade support and incompleteness of individual
taxa.

Methods

We selected eight published empirical data sets
(Table 1), all involving Bayesian or likelihood analyses
of mostly nonoverlapping vertebrate clades. All eight
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FIGURE 2. Analyses of mitochondrial DNA sequence data in plethodontid salamanders show that adding sets of characters with extensive
missing data may have negligible impacts on topology, support, and branch lengths (contrast with fig. 7 of LEA). We obtained the same 16S data
for the same species as LEA (aligned using MUSCLE; Edgar 2004), but instead of adding resampled invariant and variable sets of characters
from 16S, we added data from another gene (cytochrome b; cyt b). Data are added for the same pairs of sister and nonsister species (boldfaced)
used by LEA; all other species have missing data cells for cyt b. Bayesian analyses used MrBayes v3.1.2 (Huelsenbeck and Ronquist 2001)
with the GTR + I + Γ model and 1,000,000 generations. Likelihood analyses used RAxML version 7.2 (Stamatakis 2006) with the recommended
GTR + Γ model, with 100 integrated bootstrapping and heuristic search replicates. Both analyses were partitioned by gene. Numbers adjacent to
branches indicate posterior probabilities (Bayesian) or bootstrap values (likelihood). Trees are unrooted (but see Kozak et al. 2009 for justification
for rooting near Ensatina and Hydromantes).

have at least one species with >70% missing data, and
four data sets have at least one species with >90% miss-
ing data. Given that all eight studies are from our lab-
oratory, we know that taxa were not simply excluded
because of incompleteness, or because of how incom-
pleteness influenced the results (this is less clear for
other studies). All eight studies include multiple genes,
and six of eight include both nuclear and mitochon-
drial genes. Thus, there is considerable rate heterogene-
ity among genes and other data partitions.

For each data set, we quantified the percentage of
missing data cells in each species. Most missing data
originate from the complete absence of data from one
or more genes (or parts of genes) in combined anal-
yses, but a small fraction also comes from gaps in
alignments. Levels of branch support were based on
whichever model-based method was used in the orig-
inal study (i.e., Bayesian vs. likelihood); we arbitrarily
selected likelihood for Hua et al. (2009), which used
both. For the ranid and phrynosomatid data sets, we
used 49% as the lowest bootstrap, as specific values

<50% were unavailable; however, relatively few nodes
had values <50% (14.6% for ranids, 7.3% for phryno-
somatids) and using reasonable alternate values (e.g.,
25%) gave identical correlation results. Detailed meth-
ods are described in the original studies. However,
given that effects of missing data may depend on how
a software package treats these cells, we note that max-
imum likelihood analyses used RAxML (Stamatakis
2006) and Bayesian analyses used MrBayes (Huelsen-
beck and Ronquist 2001).

We first evaluated whether highly incomplete taxa are
placed in the clades expected based on previous tax-
onomy, and whether they are placed in these clades
with strong support. If highly incomplete taxa are gen-
erally problematic, then they should not be consistently
placed in the clades predicted by previous taxonomy,
or if they are, the support for these clades should be
weak. For each data set, we identified a set of nonnested
clades from previous taxonomy. These mostly con-
sisted of genera, as the generic-level assignment of most
of these species was previously established based on
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TABLE 1. Basic information on the eight data sets used in analyses of incomplete taxa and clade support

Clade Character data Number characters Number taxa
Plethodontid salamanders 3 mitochondrial, 3 nuclear genes 5590 182
Bolitoglossine salmanders 2 mitochondrial genes 1823 157
Treefrogs (Hyla) 4 mitochondrial, 6 nuclear genes 7083 35
Hemiphractid frogs 2 mitochondrial, 2 nuclear genes 4370 53
Ranid frogs 1 mitochondrial, 3 nuclear genes 5307 389
Emydid turtles 2 mitochondrial, 6 nuclear genes 5264 38
Phrynosomatid lizards 5 mitochondrial, 6 nuclear genes 8582 122
Snakes 20 nuclear genes 13,332 50

Phylogenetic Range missing Mean missing
Clade method data (%) per species data (%) per species References
Plethodontid salamanders ML 1.6–93.5 43.9 Kozak et al. (2009)
Bolitoglossine salmanders BA 1.6–75.9 36.4 Wiens, Parra-Olea, et al. (2007)
Treefrogs (Hyla) ML 4–96 39.7 Hua et al. (2009)
Hemiphractid frogs BA 1.2–77.4 19.9 Wiens, Kuczynski, Duellman, et al. (2007b)
Ranid frogs ML 1.1–90.8 52.5 Wiens et al. (2009)
Emydid turtles BA 2.7–72.6 20.3 Wiens, Kuczynski, et al. (2010)
Phrynosomatid lizards ML 1.6–92.3 56.2 Wiens, Kuczynski, Arif, et al. (2010)
Snakes ML 2.5–72.4 17.5 Wiens et al. (2008)

Notes: BA = Bayesian analysis; ML =maximum likelihood.

nonmolecular data. However, for higher-level snake
phylogeny, with only one species per sampled genus,
we used families (and well-established subfamilies for
Colubridae). For ranids, we used subfamilies, given that
the taxonomy for these clades is relatively stable (e.g.,
Bossuyt et al. 2006; Frost et al. 2006) whereas generic-
level taxonomy is not (e.g., Frost et al. 2006 vs. Wiens
et al. 2009). We then tallied the support for each clade
(likelihood bootstrap or Bayesian Pp) and the species
with the maximum amount of missing data in that clade
(i.e., the taxon that should be most difficult to accurately
place). We acknowledge the possibility that these higher
taxa may be associated with longer branches than a ran-
dom sampling of internal branches within the tree, but
this potential source of bias should not overturn our re-
sults or conclusions.

Following Wiens et al. (2005), we then quantified the
level of branch support for the specific placement of
each individual species based on either 1) the support
for the node placing them with their sister species (for
species that are sister to a single species), or 2) the aver-
age of the support for the clade uniting them with their
sister group, and the support for the clade excluding the
species from that sister group (for species that are sister
to >1 species). Given the level of incompleteness and
branch support for each species, we then examined the
relationship between these variables using nonparamet-
ric Spearman’s rank correlation analysis, implemented
in Statview.

Note that a negative relationship between support
and completeness is not inconsistent with the mecha-
nism proposed by Wiens (2003b). If there are too little
data to accurately place a taxon on the tree, then the
support for its placement should be weak. However, the
simulations of Wiens (2003b) suggest that, given enough
characters, even highly incomplete taxa will be accu-
rately placed in the phylogeny with high consistency.
This should be reflected with high support values.

Finally, we note that this analysis does not necessarily
address whether support values are biased by missing
data, unless they are strongly biased to be consistently
positive or negative (but LEA do not address moderate
biases either because they did not directly test how ac-
curacy and support values are related).

Results

The eight data sets collectively include >1000 species
and >60 higher taxa, and almost all of these species are
placed in the expected higher taxa, despite many hav-
ing extensive missing data (Tables 1 and 2). Further-
more, the monophyly of most of these clades is strongly
supported (Bayesian Pp = 1.00; likelihood bootstrap =
78%–100%, but most >90%). In the three cases in which
genera are not monophyletic in these data sets, there are
other factors besides missing data that are involved. In
bolitoglossine salamanders, Pseudoeurycea and Lineotri-
ton both appear to be nonmonophyletic (Wiens, Parra-
Olea, et al. 2007), but previous phylogenetic studies with
little missing data suggest that this reflects parallel evo-
lution and misleading taxonomy (Parra-Olea and Wake
2001). The nonmonophyly of Trachemys seems to reflect
conflict between mitochondrial and nuclear genes, not
missing data per se (Wiens, Kuczynski, Arif, et al. 2010).
In summary, if missing data are generally problematic
as LEA suggest, there does not seem to be any evidence
for it in these eight data sets (unless the previous non-
molecular taxonomies in these groups have been misled
in a way that is consistent with the misleading effects
of missing data on likelihood and Bayesian analyses of
DNA sequence data).

Only two of the eight studies show significant
negative relationships between branch support and
incompleteness (Fig. 3). These results suggest that miss-
ing data have little consistent negative impact on lev-
els of branch support, and there is sometimes strong
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TABLE 2. Summary of support for previously recognized higher taxa (genera, families, subfamilies) within the eight data sets, showing that
almost all higher taxa are strongly supported as monophyletic, despite many of them containing one or more taxa with extensive missing data

Clade Higher taxon Method Support Maximum incompleteness (%)
Plethodontid salamanders Batrachoseps ML 84 93.5

Gyrinophilus ML 100 49.2
Pseudotriton ML 78 47.1

Eurycea ML 100 80.5
Plethodon ML 100 80.2

Hydromantes ML 100 55.0
Ensatina ML 100 50.3
Aneides ML 100 41.6

Desmognathus ML 100 80.4

Bolitoglossine salamanders Cryptotriton BA 1.00 75.6
Dendrotriton BA 1.00 46.4

Nototriton BA 1.00 75.6
Oedipina BA 1.00 48.7
Thorius BA 1.00 4.7

Chiropterotriton BA 1.00 71.9
Pseudoeurycea BA Not supported 75.9

Ixalotriton (nested inside Pseudoeurycea) BA 1.00 49.7
Lineotriton (nested inside Pseudoeurycea) BA Not supported 4.8

Bolitoglossa BA 1.00 70.8

Treefrogs (Hyla) Tlalocohyla ML 100 52
Isthmohyla ML 100 56

Smilisca ML 100 22
Hyla ML 79 96

Hemiphractid frogs Flectonotus BA 1.00 14.8
Hemiphractus BA 1.00 68.7

Stefania BA 1.00 56.9
Gastrotheca BA 1.00 77.4

Ranid frogs Ptychadeninae ML 96 90.8
Phrynobatrachinae ML 94 54.0

Conrauinae ML 100 44.8
Petropetidinae ML 100 54.2
Pyxicephalinae ML 86 89.6

Micrixalinae ML 100 55.2
Dicroglossinae ML 96 89.8

Ranixalinae ML 88 87.1
Ceratobatrachinae ML 100 46.9
Nyctibatrachinae ML 85 26.7

Mantellinae ML 99 52.2
Rhacophorinae ML 94 90.3

Raninae ML 88 90.7

Emydid turtles Glyptemys BA 1.00 22.3
Terrapene BA 1.00 42.6

Pseudemys BA 1.00 33.1
Trachemys BA Not supported 72.6

Malaclemys BA 1.00 15.2
Graptemys BA 1.00 57.6

Phrynosomatid lizards Holbrookia ML 100 77.6
Uma ML 100 81.5

Phrynosoma ML 100 92.3
Uta ML 100 53.2

Petrosaurus ML 100 37.1
Urosaurus ML 100 52.6

Sceloporus (including Sator) ML 84 91.9

Snakes Tropidophiidae ML 100 16.9
Pythonidae ML 100 51.4
Uropeltidae ML 100 72.4

Boidae ML 100 47.7
Viperidae ML 100 23.2

Atractaspididae ML 100 68.9
Boodontidae ML 100 12.9

Elapidae ML 100 12.8
Colubridae-Xenodontinae ML 100 31.4

Colubridae-Colubrinae ML 100 15.8
Colubridae-Natricinae ML 100 58.3

Notes: BA = Bayesian analysis; ML =maximum likelihood.
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FIGURE 3. The relationship between the incompleteness of a taxon (% missing data) and the support for its localized placement in phyloge-
netic analyses using likelihood and Bayesian analysis.

support for the localized phylogenetic placement of
taxa with >90% missing data (Fig. 3), within these
expected higher taxa. Interestingly, the two data sets
with significant relationships between support and
completeness (plethodontids, ranids) have the largest
numbers of taxa but only modest numbers of charac-
ters (Table 1). Again, we note that when too few in-
formative characters have been sampled in a taxon,
we expect only weak support for its placement in
the tree.

Other Studies

In addition to these eight studies and others men-
tioned previously (e.g., Driskell et al. 2004; Philippe
et al. 2004; Wiens et al. 2005), other recent studies have
also shown similar patterns (e.g., Lynch and Wagner
2010; Thomson and Shaffer 2010; Wiens, Kuczynski,
Townsend, et al. 2010; Pyron et al. 2011). For example,

Lynch and Wagner (2010) examined boid snake rela-
tionships with a Bayesian analysis of 14,417 molec-
ular characters, with some taxa 98% incomplete and
each taxon having an average of 70% missing data.
Yet, their phylogeny is generally strongly supported
and congruent with previous hypotheses and taxonomy
(e.g., of six genera with >1 species, five are strongly
supported as monophyletic with Pp > 0.98). Wiens,
Kuczynski, Townsend, et al. (2010) showed that ad-
dition of >15,000 molecular characters to a data set
of 363 morphological characters for squamate reptiles
did not change the placement of most fossil taxa in
a combined Bayesian analysis (despite the fossils hav-
ing >98% missing data in this analysis) and caused no
significant change in Bayesian Pp for fossil taxa. Fur-
thermore, the placement of fossil taxa was consistent
with previous taxonomy (e.g., fossil snakes placed in
snakes), both before and after addition of molecular
data.
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AREAS FOR FUTURE RESEARCH

There are now many studies showing concordant sup-
port for the idea that highly incomplete taxa can be
accurately placed in model-based analyses, and sweep-
ing statements about the negative impacts of miss-
ing data are not substantiated. Nevertheless, many
other aspects of the potential impact of missing data
on phylogenetic analysis are still in need of further
research.

Adding Characters with Missing Data

In addition to the effects of incomplete taxa, another
major question is: given a complete set of characters for
a set of taxa, is it useful to add a second set of characters
that are incomplete (because they include data for only
some of the taxa)? In other words, when do the ben-
efits of adding more characters outweigh the potential
disadvantages of increasing missing data in the matrix?
Superficially, it might seem that the simulations of LEA
addressed this question. However, their results may be
of limited relevance to empirical studies because only
two species were added. Our simulations here (Fig. 1)
suggest that adding a set of characters with data for 50%
of the species is generally either beneficial or harmless
for Bayesian analysis. However, these simulations were
not comprehensive either, and additional analyses are
needed (e.g., exploring unequal branch lengths, differ-
ent numbers of characters, and different levels of taxon
sampling).

Other simulation and empirical studies have also
found results suggesting that incomplete characters can
be beneficial, but with some caveats. Wiens (1998) found
that adding sets of incomplete characters can poten-
tially increase accuracy for parsimony, but that accuracy
was increased more by distributing the same amount
of added data among fewer taxa and more characters
(and with less missing data). He also found potential
problems of long-branch attraction when a set of highly
incomplete characters is added.

Wiens et al. (2005) showed that adding a set of slow-
evolving characters (nuclear genes) available for only
some taxa (and with much missing data) seemed to im-
prove results relative to those from analyzing only fast-
evolving characters (mitochondrial genes) for a larger
number of taxa. Specifically, some taxa are apparently
misplaced in the analysis of fast-evolving characters
alone (based on previous taxonomy), but not in the com-
bined analysis.

The simulations of Gouveia-Oliveira et al. (2007)
showed that accuracy of likelihood analyses was much
higher when sequences with gaps (i.e., missing data) are
included rather than excluded. Similarly, Wiens (2009)
used simulations to address whether adding molecu-
lar data improves phylogenetic accuracy for fossil taxa,
in a combined analysis of molecular and morphological
data, with parsimony and Bayesian analysis (where the
molecular data are missing in the fossil taxa). These sim-
ulations showed that under many conditions, adding
molecular data improved accuracy for fossil taxa. A

review of empirical studies (Wiens 2009) showed that
adding molecular data can improve resolution (i.e., re-
solve polytomies in consensus trees) for the placement
of fossil taxa, at least in some parsimony analyses (e.g.
Manos et al. 2007). An analysis of squamate reptiles
(Wiens, Kuczynski, Townsend, et al. 2010) confirmed
that molecular data can change the placement of some
fossil taxa, in addition to increasing resolution.

Estimating Divergence Times

It would also be worthwhile to investigate the ef-
fects of missing data on estimation of divergence times.
LEA state that their results on branch length estima-
tion are relevant to this issue, but they acknowledge
that their results may be an artifact of not including
rate heterogeneity in the likelihood model (p. 139), and
this latter hypothesis is supported by our analyses also
(Fig. 2). Furthermore, their study contains no actual esti-
mation of divergence dates. We have conducted several
divergence-dating analyses using matrices that contain
extensive missing data (e.g., Wiens, Parra-Olea, et al.
2007; Kozak et al. 2009; Wiens et al. 2009), using both pe-
nalized likelihood and Bayesian approaches (Sanderson
2002; Drummond et al. 2006). Yet, we have found no ev-
idence to suggest that these estimates are generally mis-
led by missing data. Instead, these estimates are gen-
erally similar to those for the same groups based on
smaller data sets with fewer missing data cells (e.g.,
Bossuyt et al. 2006 vs. Wiens et al. 2009 for ranid frogs;
Wiens 2007 vs. Kozak et al. 2009 for plethodontid sala-
manders). But again, this is an area in need of further
investigation.

Other Areas

Many other areas remain to be investigated. For ex-
ample, it is unclear how congruence among gene trees
may interact with missing data to impact phylogenetic
accuracy. All simulation studies published so far have
assumed that different genes share the same history, and
have been based on combined analysis of genes (either
implicitly or explicitly). The impact of missing data on
methods that estimate species trees without concatena-
tion (e.g., Edwards et al. 2007) also requires study.

The impact of missing data on support values would
also benefit from additional study. For examples, simu-
lations are needed to address whether the standard in-
terpretation of support values (e.g., likelihood bootstrap
support, Bayesian Pp) remains valid for taxa with exten-
sive missing data.

CONCLUSIONS

LEA state (p. 130) that the results of their study
“have major implications for all analyses that rely on
accurate estimates of topology or branch lengths, in-
cluding divergence time estimation, ancestral state re-
construction, tree-dependent comparative methods, rate
variation analysis, phylogenetic hypothesis testing, and
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phylogeographic analysis.” However, examination of
their results shows that their evidence for the negative
impacts of missing data hinge largely on methodologi-
cal choices that would presumably not be made by most
empirical systematists (e.g., adding data sets consisting
of invariant or “saturated” characters, failing to parti-
tion data sets evolving at dramatically different rates).
Unless those choices are made, their sweeping general-
izations are not supported by their own results. These
generalizations are also contradicted by many previous
simulation and empirical studies, and also by new re-
sults from simulations that incorporate larger numbers
of taxa and data partitioning (Fig. 1), from reanalysis
of their plethodontid salamander example (Fig. 2), and
from eight empirical data sets analyzed here (Fig. 3).
In contrast to the idea of discordance among studies
promoted by LEA, we argue that most results on miss-
ing data can be explained in a common theoretical
framework (Wiens 2003b), and that most studies sug-
gest that it should generally be possible to accurately
place incomplete taxa in phylogenies, if enough infor-
mative characters are sampled. We think that there is a
need for continued investigation of the impact of miss-
ing data on phylogenetics, and we point out specific top-
ics in particular need of focused research. However, fu-
ture studies should strive to reconcile their new results
with those from previous studies in order to make real
progress in this area.
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