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Abstract.—The avian family Timaliidae is a species rich and morphologically diverse component of African and Asian tropi-
cal forests. The morphological diversity within the family has attracted interest from ecologists and evolutionary biologists,
but systematists have long suspected that this diversity might also mislead taxonomy, and recent molecular phylogenetic
work has supported this hypothesis. We produced and analyzed a data set of 6 genes and almost 300 individuals to assess
the evolutionary history of the family. Although phylogenetic analysis required extensive adjustment of program settings,
we ultimately produced a well-resolved phylogeny for the family. The resulting phylogeny provided strong support for
major subclades within the family but extensive paraphyly of genera. Only 3 genera represented by more than 3 species
were monophyletic. Biogeographic reconstruction indicated a mainland Asian origin for the family and most major clades.
Colonization of Africa, Sundaland, and the Philippines occurred relatively late in the family’s history and was mostly unidi-
rectional. Several putative babbler genera, such as Robsonius, Malia, Leonardina, and Micromacronus are only distantly related
to the Timaliidae. [Babbler; biogeography; convergence; parameter interaction; Timaliidae.]

The Timaliidae, generally known as the babblers, is a
diverse family of oscine passerine birds that tradition-
ally includes about 275 species in 50 genera (Dickinson
2003). These Old World insectivores are strikingly di-
verse, both in species richness and breadth of mor-
phological and behavioral adaptations. Babblers are
highly social forest birds that often are found in mixed-
species flocks. Their diversity of forms and behaviors,
which has led to comparisons with Neotropical antbirds
(Thamnophilidae) and antthrushes (Formicariidae) in
their ecological diversity (Collar 2003), is reflected in
the English names of some babbler genera: wren-
babblers, jungle-babblers, tit-babblers, thrush-babblers,
parrotbills, scimitar-babblers, etc.

Babblers are a major component of the tropical Asian
avifauna and a model system to study the biogeogra-
phy of SE Asia. This species-rich family reaches its high-
est diversity in SE Asia and is almost entirely restricted
to the Old World (one species occurs in North America).
Babblers are a significant part of the forest community in
Asia, with a dozen or more species co-occurring in most
areas. This high level of sympatry suggests that they
are ideal for assessing general diversification patterns
and testing biogeographic congruence among multiple
codistributed groups. Most species of babblers are re-
stricted to the interior of tropical forests, have relatively
limited distributions, and are not migratory. These at-
tributes minimize the introduction of noise into biogeo-
graphic analyses. However, biogeographic inference has
not been possible because relationships among babblers
have mostly been unknown and even family member-
ship is uncertain for many genera. The extent of tax-
onomic disarray was well characterized by Mayr and
Amadon (1951), who stated that the Timaliidae had long

been a “scrap basket” for genera that did not fit well into
other families.

Recent molecular phylogenetic work has begun to
shed light on the degree of disconnect between taxon-
omy and relationships in babblers (Cibois 2003; Gelang
et al. 2009). Cibois (2003) sequenced mitochondrial DNA
from 62 species of babblers and discovered that some
putative ingroup taxa were not babblers (Kakamega
and Pteruthius), whereas some outgroup genera (Sylvia
[traditionally Sylviidae] and Zosterops [traditionally
Zosteropidae]) were reconstructed within babblers.
Furthermore, several genera were not recovered as
monophyletic. Basal nodes in the phylogeny were not
strongly supported, possibly because of the reliance on
mitochondrial DNA alone. Gelang et al. (2009) shifted
sampling strategies and included 4 nuclear markers in
addition to one mitochondrial gene. This character sam-
pling resulted in much better resolution of basal nodes
in the family, allowing unambiguous subfamily delin-
eation. However, the Gelang et al. (2009) study included
only 41 species and so was unable to address the issue
of paraphyletic genera identified by Cibois (2003).

Additional studies have focused on subsets of the
Timaliidae, which made possible reinterpretations of
some babbler relationships. For example, Philippine
members of the genus Stachyris are closely related to
the family Zosteropidae (Cibois et al. 2002; Zhang et al.
2007; Moyle et al. 2009), the genus Pteruthius (Reddy
and Cracraft 2007), and Erpornis zantholeuca (Cibois et al.
2002; Barker et al. 2004) are closely related to New
World vireos (Vireonidae), and the genus Alcippe, in
fact, comprises 4 clades that are interspersed through-
out the babbler phylogenetic tree (Pasquet et al. 2006). In
general, modern systematic studies of babblers recover
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paraphyly of genera, species, and even subspecies (e.g.,
Cibois et al. 2002; Cibois 2003; Reddy 2005; Pasquet et al.
2006; Zhang et al. 2007; Zou et al. 2007; Gelang et al.
2009; Luo et al. 2009; Dong et al. 2010; Reddy and Moyle
2011; Yeung et al. 2011). These molecular studies illus-
trate clearly what had been suspected by avian sys-
tematists (e.g., Newton et al. 1893; Mayr and Amadon
1951): extreme ecomorphological variation obscures ev-
ery level of timaliid classification. Yet this same attribute
that makes the taxonomy so vexing also makes the
family intriguing for evolutionary study.

Our main objective was to produce a robust phylo-
genetic hypothesis for the babblers to evaluate current
taxonomy and assess the evolution of the family. We as-
sembled a large data set of nuclear and mitochondrial
DNA sequences from almost 300 individuals, which in-
cluded all but one genus and roughly 55% of babbler
species, to reconstruct phylogenetic relationships and
estimate divergence times within the Timaliidae. We
used these to evaluate the geographic origin of major
clades and assess the potential influence of major iso-
lating features—such as the Isthmus of Kra, the oceanic
islands of the Philippines, and the dry Middle East—on
the structure and diversity of this family of tropical for-
est birds across these regions. The highest diversity of
babblers is found in mainland Asia and we evaluated
the biogeographic patterns to determine if this is the
result of babblers originating in Asia or multiple col-
onization events from other regions. We also assessed
whether there is support for multiple invasions of the
same region being of the same time period, thereby
providing support for a common mechanism or event
leading to this expansion.

As we began preliminary analyses it became appar-
ent that our data matrix exhibited many symptoms that
might lead to unreliable phylogenetic results. The prob-
lems we encountered appear to be typical of large het-
erogeneous data sets (e.g., Miya et al. 2005; Soltis et al.
2007; Hackett et al. 2008; Parfrey et al. 2010; Thomson
and Shaffer 2010). We used several methods to explore
the behavior of the analysis and adjusted program set-
tings in an attempt to ensure that we identified a reliable
estimate of relationships among babblers. These meth-
ods included experimenting with many combinations of
the number of heated chains and the amount of heating
of those chains in Bayesian analysis, identification and
removal of unstable taxa, and changing priors on branch
lengths. Ultimately, we concluded that existing methods
were amenable to analysis of our data, but careful con-
sideration of the analytical process and the behavior of
programs was required.

MATERIALS AND METHODS
Taxon and Character Sampling

Taxon sampling included 296 individuals from
approximately 50 genera and 151 species of babblers
and an additional 10 sylvioid genera as outgroups
(Appendix Table Al). The entire matrix was rooted with
E. zantholeuca. This species had been included in the

babblers until molecular data (Cibois et al. 2002; Barker
et al. 2004) revealed that it was in fact a corvoid and only
distantly related to babblers. The rest of the outgroup
taxa were unconstrained in the analysis. We included
2 samples per species whenever possible for 2 reasons.
First, we used the redundancy to guard against errors
of misidentification, mislabeling, or sample contamina-
tion. Second, we used geographically disjunct sampling
localities to obtain a preliminary idea of intraspecific
genetic divergences. The source of this material breaks
down as follows: 265 samples derived from vouchered
fresh tissue samples, 28 samples of historical DNA de-
rived from museum study skins, 2 samples derived from
unvouchered blood samples, and sequences for one in-
dividual were downloaded from GenBank.

To provide phylogenetic signal at multiple levels in
the phylogeny, we sequenced 3 mitochondrial genes
and 3 nuclear introns. Sequences of the mitochondrial
genes cytochrome b (Cytb), nicotinamide adenine dinu-
cleotide dehydrogenase subunit 2 (ND2), and subunit
3 (ND3), the fifth intron of the transforming growth
factor (TGF) 32, the fifth intron of the nuclear gene Beta-
Fibrinogen (Fib5), and the third intron of the Z-linked
muscle-specific kinase gene (MUSK) were amplified us-
ing the primers L14851 (Groth 1998), L428 and H494
(Reddy 2008), Hb745 (Reddy and Moyle 2011), L5215—
H6313 (Sorenson et al. 1999), 1L.10755—H11151 (Chesser
1999), TGF5 and TGF6 (Primmer et al. 2002), Fib5 and
Fib6 (Marini and Hackett 2002), MUSK-I3F and MUSK-
I3R (Kimball et al. 2009), respectively. Laboratory meth-
ods generally followed those described in Oliveros and
Moyle (2010). For DNA samples extracted from mu-
seum study skins, conditions followed those described
in Reddy (2008). Contigs were reconciled in Sequencher
4.9 (Genecodes) and fine-tuned manually following an
initial alignment with MUSCLE v3.8 (Edgar 2004).

Data Exploration and Program Settings

As is the case with most systematic studies, our pri-
mary concern in phylogenetic analysis was obtaining ro-
bust estimates of relationships among the ingroup taxa.
Preliminary Bayesian and maximum likelihood (ML)
analysis on our data indicated that several analytical
hurdles would impede straight-forward phylogenetic
analysis: failure to converge, parameter interaction, and
unrealistic branch lengths in Bayesian runs, and taxon
instability due to missing data in ML and Bayesian anal-
yses. These issues were above and beyond the standard
fine-tuning of program settings. Below we describe a
general work flow of analytical approaches. In the Re-
sults section, we report additional fine-tuning to the an-
alytical approach that we adopted in response to certain
outcomes.

Rogue taxa—Our data matrix contained several taxa
represented by a small proportion of the total number
of characters. DNA sequences for these taxa were de-
rived from old museum study skins rather than fresh
tissues, and some individuals had fewer than 700 bp
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of sequence (~15% of the matrix). In the context of
supermatrices, it has been shown that missing data can
cause unstable placement of taxa in a phylogeny, so-
called “rogue taxa,” lowering support indices for clades
that otherwise would receive strong support (Sanderson
and Shaffer 2002; Thomson and Shaffer 2010). To test the
stability of taxon placement, and its influence on phylo-
genetic reconstruction, we imported the trees from 1000
RAXML (Stamatakis 2006; Stamatakis et al. 2008) boot-
strap replicates into Mesquite (Maddison and Maddison
2010) and measured taxon instability among trees. Taxa
that had few data and highly variable phylogenetic
placement among bootstrap replicates, which might ob-
scure high support for clades, were removed from some
analyses.

Data partitions and evolutionary models.—Preliminary
runs of MrBayes using default settings did not con-
verge after 20-million generations, as judged by the
average standard deviation of split frequencies (AS-
DSF) reported by the program. Furthermore, plots of
log-likelihoods from the posterior distribution shifted
to new plateaus after several million generations of
seeming stationarity. The lack of convergence precluded
the use of Bayes Factors (Huelsenbeck and Imennov
2002; Nylander et al. 2004; Brandley et al. 2005) to
determine optimal partitioning of the data. Because
of this we used ML searches in GARLI-PART ver-
sion 0.97 (Zwickl 2006) with the Akaike Information
Criterion (AIC) (Akaike 1974) and Bayesian Informa-
tion Criterion (Schwarz 1978) to test various partition-
ing strategies. Because of the large number of possi-
ble partitions in the data, we limited testing to a set
of partitions that are biologically intuitive (i.e., genes
and codon positions) and found to induce large in-
creases in likelihood scores in other studies (e.g., Ny-
lander et al. 2004; Brandley et al. 2005; McGuire et al.
2007). Appropriate evolutionary models for each par-
tition were evaluated by the AIC in MrModeltest 2.3
(Nylander 2004) based on likelihood scores derived
from PAUP* ver. 4b10 (Swofford 2003). Subsequent ML
and Bayesian analysis utilized the chosen partitioning
strategy and evolutionary models.

Phylogenetic Analysis

We conducted tree searches under the ML criterion
using Garli 0.97 (Zwickl 2006) and RAXML 7.2.6 (Sta-
matakis 2006; Stamatakis et al. 2008). RAXML searches
consisted of 20 repetitions from random starting trees.
Settings for Garli searches included 200 attachments
per taxon, generation threshold for topoterm 10,000 and
score threshold for termination 0.05. Likelihood scores
from each program, and topologies from both programs,
were compared with assess convergence on a common
topology and likelihood. Support for nodes in the phy-
logeny was estimated with 1000 fast bootstrap repeti-
tions in RAXML.

Bayesian analysis used the parallel version of
MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001;
Ronquist and Huelsenbeck 2003; Altekar et al. 2004).

All analysis used multiple concurrent runs and at
least 3 heated chains for each cold chain. The sub-
stitution matrix, base frequencies, and gamma shape
parameter were unlinked between data partitions,
and the rate prior was set to variable (prset applyto =
(all) ratepr=variable), allowing partitions to evolve at
different rates. The number of attempted chain swaps
was increased to 2 (nswaps = 2). Bayesian analysis
was conducted on the entire matrix as well as each
locus individually. The 3 mitochondrial genes were
considered a single locus and analyzed together.

Examination of parameter estimates from preliminary
Bayesian analysis revealed that default program set-
tings would not be optimal for this data set and that
extensive fine-tuning would be necessary to achieve
reliable results. MCMC runs using default parameters
resulted in a low proportion of accepted swaps between
adjacent Markov chains, typically less than 5%, and
independent runs had not converged after 40-million
generations. To increase the efficiency of sampling, we
incrementally lowered the temp value in MrBayes un-
til the proportion of accepted swaps was in a range of
~0.2-0.7. Because of the incremental heating used in
MrBayes, we also added more heated chains to some
runs with lower temp values.

We used several methods to assess the results of
our Bayesian analysis. We used the program splitsmb
(Lakner and Ronquist 2008) to examine the ASDSF us-
ing a range of burn-in proportions. Tracer 1.5 (Rambaut
and Drummond 2007) and Are We There Yet? (AWTY;
Wilgenbusch et al. 2004) were used to visualize the con-
vergence of parameter estimates and posterior probabil-
ity of clades, respectively. Tree topologies and support
values were compared with TreeGraph 2 (Stover and
Muller 2010).

Timing of Diversification

When estimating dates for nodes in a molecular phy-
logeny, the choice of calibration points and the way they
are represented can have a large influence on node ages
and confidence intervals (e.g., Inoue et al. 2010). The fos-
sil record of passerine birds is sparse and does not pro-
vide useful calibration points for babblers. Instead, we
used 2 secondary calibrations derived from other time-
calibrated phylogenies. This is admittedly not an ideal
strategy, and all age estimates must be evaluated with
caution. One secondary calibration is derived from a
study of Zosterops relationships (Moyle et al. 2009) that
assessed the timing of diversification using island ages
in the Solomon Islands as calibration points and esti-
mated the crown Yuhina + Zosteropidae to be a maxi-
mum of 8.8 Ma. The second calibration is derived from
the rifting of New Zealand from Australia, a putative vi-
cariant event used to calibrate a higher level phylogeny
of passerine birds (Barker et al. 2004). This calibration
yielded a range of 27.1-37.3 Ma for the node separat-
ing megalurine warblers from all other sylvioids. Our
taxon sampling incorporated these nodes and allowed
us to use these age estimates to calibrate the timing of
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diversification in babblers. The estimated ages of ma-
rine transgressions that inundated the Isthmus of Kra,
which separates mainland Asia from Sundaland, have
been used as calibration points in other studies (e.g.,
Fuchs et al. 2006, 2008), but we were interested in evalu-
ating the influence of the Isthmus in generating or parti-
tioning diversity so we avoided using it as a calibration
in this study.

To place an approximate time scale on the babbler
phylogeny, we used the 2 calibration points and the ML
phylogram to produce an ultrametric tree with branch
lengths proportional to time in Phylobayes (Lartillot and
Philippe 2004, 2006). Phylobayes uses MCMC to sam-
ple a posterior distribution of node ages from a fixed
topology under a variety of relaxed clock models. We
used the lognormal model (Thorne et al. 1998) to de-
scribe the change of rates over time and applied a broad
gamma-distributed prior to the root of the tree (mean 40,
standard deviation 20). Soft bounds were used on the
calibration points, which allowed 5% of the probability
to be allocated outside of the calibration limits. A birth—
death prior on divergence times was specified with p1
and p2 considered free parameters.

Biogeographic Analysis

The broad geography inhabited by babblers and our
incomplete species-level sampling induced us to per-
form biogeographic analysis at the broadest levels. We
coded 6 geographic regions that are separated by sub-
stantial barriers: Africa, Eurasia, Sundaland, oceanic
Philippines, east of Wallace’s Line, and New World. The
first 4 regions cover the vast majority of the species
diversity in babblers. Our main goal was to infer the ge-
ographic origin of major clades of babblers. Our sam-
pling of the Zosteropidae was especially sparse (20 of
ca. 120 species) but we captured all the basal nodes in
the family (Moyle et al. 2009), which are needed for bio-
geographic reconstruction of basal babbler nodes. We
acknowledge that the regional coding lumps some bio-
geographical subregions, such as the Himalayas and
Indochina. Future analysis with more complete species-
level sampling will be required to assess the influence of
these regions.

We used parsimony and Bayesian methods to re-
construct ancestral areas at nodes in the phylogeny.
Both methods were implemented in the software pro-
gram Reconstruct Ancestral States in Phylogenies v1.1
(RASP; Yu et al. 2011) and included summation of
the results over trees from 50-million generations of
the posterior distribution (10,000 trees) to account for
topological uncertainty. First, we used the event-based
method Statistical Dispersal-Vicariance Analysis (Yu
et al. 2010), which allows multiple topology summa-
tion within DIVA (Ronquist 1997), thus accounting for
phylogenetic uncertainty. DIVA is a parsimony-based
method in which vicariance is assumed and inferred
dispersal events are assigned a cost. Long-distance dis-
persal likely contributed to the current distribution of
babblers; therefore, an a priori assumption of vicariance

may not be appropriate. To account for this, DIVA con-
tains a useful feature in which the maximum number
of areas in the ancestral distribution can be limited.
This option eliminates ancestral distributions that con-
tain multiple far-removed regions and forces dispersal.
No extant species of babbler spans more than 2 regions,
and the few that span 2 regions only occur in Asia and
Sundaland. Because of these geographic restrictions, we
limited the maximum number of regions in ancestral
areas to 2. Because DIVA only allows a maximum of
127 terminals, we excluded the second individual of all
species, included only babblers and Erpornis and win-
nowed clades that included only a single geographic
character state. For this reduced data set, we coded
Erpornis as occurring in all regions to not bias recon-
structions at the base of the tree.

Dispersal-Vicariance Analysis has been criticized
because the assumption of vicariance might bias re-
constructions and is unrealistic in oceanic island set-
tings (e.g., Lamm and Redelings 2009; Kodandaramaiah
2010). Because the geographic regions we used contain
oceanic islands, we also used a model-based Bayesian
reconstruction of ancestral states. The Bayesian method
in RASP (Yu et al. 2011) used the MrBayes 3.1.2 source
code and implemented relatively simple models of char-
acter state evolution that assumed equal rates of change
and fixed (JC) or estimated (F81) state frequencies. Char-
acter states (biogeographic regions) were analyzed as
binary characters and gamma-distributed rate variation
between sites (regions) could be enabled. Because some
geographic regions contain few babbler species, and ex-
change between regions is expected to vary, we used the
F81+gamma model. Two independent runs of 10 chains
with a temperature of 0.1 were run for 1-million gener-
ations and sampled every 100 generations. A distance
between runs (analogous to the ASDSF) of less than 0.01
was used as an indicator of convergence. We discarded
2500 samples (250,000 generations) before calculating
the state frequencies. As in the DIVA analysis above,
we limited to 2 the maximum number of areas included
within ancestral distributions. The full taxon sampling
was used in Bayesian reconstructions.

RESULTS

The final DNA sequence matrix comprised 292
individuals and 4688 characters, of which 1760 were
constant, 362 were variable but parsimony uninforma-
tive, and 2566 were parsimony informative. Informative
sites were distributed across loci as follows: ND2 (669),
ND3 (208), Cytb (546), TGF (390), Fib5 (363), and MUSK
(395). Base composition varied among loci but was con-
sistent with patterns recovered for the same markers
in other bird groups. All mtDNA sequences appeared
to be genuine mitochondrial sequence, rather than
nuclear copies. Sequences contained no stop codons,
overlapping fragments contained no conflicts, base com-
position was homogeneous across taxa, codon positions
contained expected relative divergences (3 > 1 > 2), and
there were no highly suspect relationships among taxa.
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The data matrix and final trees are available at TreeBASE
(http:/ /www.treebase.org; 511986).

Based on nonmonophyly of conspecific samples, we
determined several individuals that we suspected of be-
ing identified incorrectly. We checked with the loan-
ing institution for each of the problematic samples and,
because we used >99% vouchered material, we were
able to obtain clarifications of all identifications. Some
samples had already been reidentified by the host insti-
tution, whereas others were reidentified after our infor-
mation requests. A few species (e.g., Alcippe morrisonia,
Pomatorhinus ruficollis, and Pomatorhinus erythrogenys)
remained paraphyletic, but corroborate results from
other studies (e.g., Zou et al. 2007; Reddy and Moyle
2011).

Program Settings and Behavior of Analysis

Preliminary Bayesian analysis that included only 6
data partitions revealed that simultaneously accounting
for invariant sites and gamma-distributed rate variation
among sites appeared to induce parameter interaction.
In 2 subsets of the data, independent runs stabilized
on different parameter estimate ranges. One run sta-
bilized on a high proportion of invariant sites and a
high value for a (describing the gamma distribution),
whereas the other run stabilized on a lower proportion
of invariant sites and a correspondingly lower « (Fig. 1).
Apparently, using 2 methods to accommodate rate vari-
ation across sites allowed combinations of parameter es-
timates that produced multiple regions of high posterior
probability. The effects of the interaction between rate
heterogeneity parameters on our parameters of inter-
est (topology and branch lengths) are unclear. Although
one pair of runs stabilized on similar likelihood scores,
both pairs of runs did not achieve topological con-
vergence; the ASDSF after 20-million generations was
~0.05 for both pairs. MrModeltest 2.3 (Nylander 2004)
indicated either GTR + G or GTR + I + G evolutionary
models for all data partitions. Because of the potential
for parameter interaction, we chose to omit the invariant
sites parameter and used only gamma-distributed rate
variation.

The AIC indicated that the most partitioned model
best fit the data (Table 1). This model contained 12 par-
titions, dividing the data by each gene and codon po-
sition. The BIC indicated a more conservative scheme
with 10 partitions, which included all 3 introns in a sin-
gle partition. The 2 partitioning strategies produced al-
most identical results. Consensus-tree topologies were
identical and posterior probabilities varied only slightly,
especially for well-supported nodes.

Early Bayesian runs stabilized on tree lengths that
were ~3 times larger than values obtained from
ML analyses. This phenomenon has been noted in
Bayesian analysis of partitioned data sets (Brown et al.
2010; Marshall 2010), and we used the workaround
described by Marshall (2010) to overcome the unrealis-
tic tree lengths by adjusting the branch-length prior in
MrBayes to an exponential distribution with a smaller

mean (0.01) via the command: prset applyto = (all)
brlenspr = unconstrained:exponential(100). After this
adjustment, all Bayesian runs converged on tree lengths
similar to those recovered from ML analysis.

Taxon instability tests in Mesquite (Maddison and
Maddison 2010) revealed that 2 species for which we
had limited data varied in phylogenetic placement far
more than all other taxa in the matrix. These 2 species,
Parophasma galinieri and Graminicola bengalensis, were
represented by 2 individuals each but all 4 samples con-
tained less than a quarter, and as little as 7.5%, of the
characters in the data matrix (351-958 bp). Removing
these taxa from the analysis resulted in a marked in-
crease in bootstrap support for many basal nodes in
the tree. For example, when P. galinieri was included
in the analysis, it was inferred to be the sister taxon of
the Timaliinae (Fig. 2, clade C), albeit with only 55%
bootstrap support but support for other basal nodes in
the Timaliinae dropped dramatically. Support for the
Timaliinae (exclusive of P. galinieri) fell from 100% to
66% and the 2 main subclades from 98% and 97% to
83% and 85%, respectively. Inclusion of the other unsta-
ble taxon, G. bengalensis, reduced support values across
basal nodes within the Leiothrichinae (Fig. 2, clade A).
All subsequent analysis omitted these taxa.

The temp setting in Bayesian analysis was lowered
by increments until, at a setting of 0.06, the proportion
of successful swaps for adjacent chains was between
0.2 and 0.5. This lower temperature did not, how-
ever, induce convergence between the posterior distri-
bution of topologies of independent runs. Two runs
of 4 chains with temp = 0.06 had failed to converge
when the run was terminated after 50-million gen-
erations (Supplementary Fig. 1, http://datadryad.org,
doi:10.5061/dryad.100jc764). Likewise, including addi-
tional heated chains to runs at higher temp settings did
not seem to influence the rate of convergence either.
However, the combination of a low temp value and ex-
tra heated chains changed the behavior of runs entirely.
Two independent runs of 8 chains each (7 heated) and a
temp = 0.06 converged rather quickly. The ASDSF us-
ing the default burn-in of 0.25 crossed below 0.01 by
10.5-million generations.

Phylogenetic Results

Bayesian and ML analysis produced congruent phy-
logenetic trees, with differences not supported strongly
by bootstrap resampling or posterior probability. Basal
nodes subtending major clades of babblers all received
strong support from both analysis methods (Fig. 2). Sim-
ilar to recent molecular studies (e.g., Alstrom et al. 2006;
Johansson et al. 2008; Gelang et al. 2009), several bab-
bler genera (e.g., Chamaea, Paradoxornis, Fulvetta, Conos-
toma, and Chrysomma) were members of a clade (Fig.
3, clade E) separate from all other babblers and should
more correctly be assigned to the Sylviidae. We also cor-
roborated earlier results indicating that the white-eye
family Zosteropidae is embedded within the babbler
genus Yuhina (Fig. 3, clade D; Moyle et al. 2009). Within
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FIGURE 1. Likelihoods and parameter estimates for second codon positions (a) and the MUSK intron (b) from 2 different 20-million gener-
ation preliminary Bayesian runs. From top to bottom, log likelihood, o parameter for gamma-distributed rates among sites, and proportion of
invariant sites are plotted against generation. Likelihood scores are not comparable because taxon sampling differed slightly between runs. The
ASDSEF at the end of each run was 0.049 (a) and 0.055 (b).

the core babblers, all analyses identified 3 subclades The first major subclade (Fig. 3, clade A), Leio-
corresponding to the Leiothrichinae, Pellorneinae, and  thrichinae, included the species-rich genus Garrulax and
Timaliinae of Gelang et al. (2009). All 3 clades received several other smaller genera and was well supported,
high node support. with bootstrap support/posterior probability of 97/1.0.

TABLE 1. Results of ML-based partition testing of the combined matrix

N2 Description InL Free parameters AICP BIC*
1 All together —169226.0831 9 338470.1662 338528.2162
2 mt, nuc —166517.8794 19 333073.7588 333196.3088
4 mt, 3 nuc —166472.0646 39 333022.1292 333273.6792
4 3 mtgenes, nuc —166299.429 39 332676.858 332928.408
4 3 codon positions, nuc —163539.1057 39 327156.2114 327407.7614
6 3 codon positions, 3 nuc —163494.4529 59 327106.9058 327487.4558

10 3 codon positions x 3 mtgenes, nuc —163160.3325 99 326518.665 327157.215

12 3 codon positions x 3 mtgenes, 3 nuc —163107.7703 119 326453.5406 327221.0906

2Number of partitions, each using GTR + G.
PCalculated as 2*(parameters - InL).
€Calculated as (-2InL) + (parameters x In base pairs).
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(Leiothrichinae)
95/1.0

Timaliidae
100/1.0
Clade B
98/1.0| (Pellorneinae)
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100/1.0

Clade C
(Timaliinae)
100/0.96
100/1.0 Clade D
(Zosteropidae)

98/0.96 Clade E

(Sylviidae)
Outgroup

FIGURE 2. Summary of higher level relationships for babblers
based on ML analysis of the combined data set with 12 partitions.
Numbers by nodes refer to ML bootstrap support/Bayesian posterior
probability.

The basal node in the clade divided the genus Alcippe
(sensu Pasquet et al. 2006) from the rest of the taxa
and was also well supported (96/1.0). Uncertainty exists
about relationships just above this basal node. Bayesian
results (not shown) placed Garrulax striatus sister to Cu-
tia nipalensis, whereas ML results placed each species
branching sequentially from the base of their clade. Nei-
ther relationship was well supported, with a posterior
probability of 0.88 separating the 2 taxa and bootstrap
support of 43% uniting them as sisters. Moving up from
the base of the tree, the next clade (77/0.99) subdi-
vided into 2 large subclades. One of the subclades in-
cluded a clade with a large number of Garrulax species
sister to a clade including Phyllanthus and Kupeornis
imbedded inside of Turdoides. The second subclade in-
cluded the remainder of the Garrulax species sister to a
clade including Heterophasia, Actinodura, Minla, Crocias,
Liocichla, and Leiothrix. Well-supported nodes in clade
A rendered Garrulax, Turdoides, Actinodura, and Minla,
nonmonophyletic.

The second major subclade of babblers (Fig. 3,
clade B), Pellorneinae, was sister to clade A with strong
support (95/1.0). Support for the clade was unequiv-
ocal (100/1.0) but some basal relationships within the
clade were not well resolved. The clade was divided
into 2 large subclades. One subclade (97/0.95) included
a monophyletic Malacopteron (100/1.0) sister to a clade
that united Gampsorhynchus sister to Schoeniparus. The
other major subclade within clade B comprised 4 well-
supported clades, but relationships among the 4 were

equivocal. The first clade (100/1.0) included Ptyrti-
cus embedded inside of Illadopsis. The second clade
(100/1.0) included Trichastoma, a nonmonophyletic Pel-
lorneum, and 2 of the 4 Malacocincla species included
in the study. The third clade included the remaining 2
Malacocincla species, Napothera, Ptilocichla, Jabouillea, and
Rimator. The final clade comprised only a single species,
Kenopia striata. Well-supported nodes in clade B ren-
dered Illadopsis, Pellorneum, Malacocincla, and Napothera
nonmonophyletic.

The third major subclade of babblers (Fig. 3,
clade C), Timaliinae, was sister to the clade formed
by clades A and B. This group included the large
genera Stachyris and Pomatorhinus as well as several
smaller genera. Pomatorhinus, Xiphirhynchus, Sphenoci-
chla, Spelaeornis, and the larger-bodied Stachyris species
formed a clade with strong support (97/1.0). Within
that clade Spelaeornis was sister to all other species.
Sphenocichla was reconstructed among the larger bodied
Stachyris, which formed a clade with low support and,
in turn, was embedded within Pomatorhinus, as was
Xiphirhynchus. The other half of clade C included Durme-
tia, Rhopocichla, Timalia, Macronus, and the smaller bod-
ied Stachyris species. Macronus was not monophyletic,
with Macronus gularis reconstructed in a weakly sup-
ported clade (61/0.98) with Dumetia, Timalia, and
Rhopocichla, whereas Macronus striaticeps and Macronus
ptilosus formed a clade (95/1.0) sister to the small-
bodied Stachyris clade (100/1.0). Of genera represented
by more than one species in clade C, only Spelaeornis was
monophyletic.

All analyses placed 4 traditional genera of babblers
outside of the clades described above. Because of the
sparse outgroup sampling in families more distantly
related to the babblers, these genera could not be
placed with any certainty. Three of the aberrant babbler
genera—Leonardina, Robsonius, and Micromacronus—are
endemic to the Philippines, whereas Malia is endemic to
Sulawesi.

Individual gene trees (Supplementary material) were
largely congruent with the combined results, but with
lower support for most relationships. Two notable, well-
supported differences occurred in single gene trees.
First, analysis of TGF alone produced strong support for
a sister relationship between the Zosteropidae (Fig. 2,
clade D) and Leiothrichinae (Fig. 2, clade A). This re-
lationship is not supported by any of the other mark-
ers, which placed the Zosteropidae sister to the babblers
with significant support (mtDNA and MUSK) or un-
resolved (Fib). The second discrepancy concerned the
placement of Alcippe with respect to the Leiothrichinae
(Fig. 3, clade A). Analysis of 2 introns alone placed the
genus sister to the Pellorneinae with posterior probabil-
ities of 0.99 (MUSK) and 0.31 (Fib5), whereas the other 2
markers placed it as the basal lineage in the Leiothrichi-
nae with posterior probability of 0.66 (mtDNA) and 1.0
(TGF). The lack of topological convergence in indepen-
dent Bayesian runs under default program settings did
not appear to be caused by this conflict in phylogenetic
signal. Analysis of the combined matrix without Alcippe
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did not converge after 40-million generations under
default program settings.

Biogeographic Results

Bayesian and parsimony reconstruction of ancestral
areas produced congruent results for most basal nodes
(Fig. 4). Two of the 3 core babbler clades (Leiothrichinae
and Timaliinae), as well as the Zosteropidae, were re-
constructed unambiguously as originating in mainland
Asia. The 2 methods differed regarding the ancestral
area of the Pellorneinae, with the Bayesian results
strongly supporting a mainland Asia origin possibly
shared with Sundaland, whereas DIVA was more equiv-
ocal, indicating plausible support for 4 ancestral areas:
Asia, Sundaland, Asia + Sundaland, and Africa + Asia.

As expected from the preponderance of Asian taxa
in the Leiothrichinae, the subfamily appears to have
evolved mostly within mainland Asia, with a single
colonization of Africa (Turdoides, Phyllanthus, and Ku-
peornis) and a few colonizations of Sundaland (e.g.,
Garrulax mitratus, Garrulax palliatus, and Alcippe brun-
neicauda). Although the origin of the Timaliinae was
unambiguous, both biogeographic methods produced
many equivocal reconstructions within the subfamily,
indicating multiple colonizations of Sundaland and one
of the Philippines, as well as the possibility of infre-
quent back colonizations to Asia. This pattern of ambi-
guity was expanded in the Pellorneinae, with multiple
disjunctions between Asian and Sundaland along with
a single colonization event of the Philippines (Ptiloci-
chla mindanensis, from Sundaland), and a single colo-
nization of Africa (Illadopsis, from an uncertain ancestral
distribution).

DIVA and Bayesian methods reconstructed some bio-
geographic events in different ways. For example, the
colonization of Africa by Turdoides appears to be an un-
complicated pattern but is reconstructed differently by
the 2 methods. The genus is embedded within an un-
ambiguously Asian clade, and a single colonization of
Africa is evident. However, Bayesian analysis produces
an unequivocal Asian distribution for the ancestor of the
African clade and its Asian sister taxon (Turdoides gu-
laris), whereas DIVA (not shown) reconstructs a larger
ancestral distribution of Asian + Africa.

Time Scale of Evolution

Relaxed clock analysis using the 2 secondary calibra-
tions produced a time scale for babbler evolution (Fig. 4)
that placed early diversification events in the Miocene.
The node uniting the Zosteropidae with the core bab-
blers was estimated at 16.1-21.0 Ma, and the 3 babbler
clades (A, B, C) began diversifying from 11.2 to 17.8 Ma.
Inferred continental dispersal/vicariance events were
not contemporaneous in most cases. For example, 2
large African radiations split from Asian sister clades
at 10.0-14.1 Ma (origin of Illadopsis / Ptyrticus) and 6.4—
9.9 Ma. (within Turdoides). We lacked samples for sev-
eral Asian species of Turdoides. Including those samples
might have altered this age estimate but would probably

have induced a more recent estimate, further from the
estimate for Illadopsis. We included all species of Illadop-
sis and dense sampling of related genera.

Some of the molecular dating results indicated that
the 2 calibration points may have been providing age
information at odds with one another. Although the age
ranges applied to the 2 calibration nodes were broad, the
analysis produced narrow confidence intervals around
each of the calibration nodes, and the confidence in-
tervals extended beyond the calibration range, which
was permitted by using soft bounds on the calibra-
tion ranges. For example, age estimates for the crown
Zosteropidae (8.4-11.4 Ma) were mostly older than the
calibration range, which was a maximum of 8.8 Ma.
Likewise, the estimated split between Megalurus and
other sylvioids (25.7-28.8 Ma) is narrow but extends be-
yond the broad calibration interval (27-37 Ma). With our
data, model, and program settings, the analysis seemed
to favor a smaller time interval between the calibration
nodes than was allowed by the calibration intervals; in
essence the calibration nodes were pulled toward each
other. We interpret this to mean that one or both of
the calibration intervals may be invalid, the model or
program settings biased the analysis or that substantial
shifts in the rate of molecular evolution occurred across
portions of the tree.

Di1sCUSSION

Considering their ecological, morphological, and
taxonomic diversity, babblers are a promising group for
exploring many facets of evolution. However, evolu-
tionary inference requires a robust hypothesis of rela-
tionships among taxa, and our results show clearly that
current taxonomy is rife with unnatural groups. Produc-
ing a reliable estimate of phylogeny was not a straight-
forward task because the data matrix was not amenable
to stock analysis and instead required extensive data
exploration and testing of program settings. A combi-
nation of low temperature and an increased number of
heated chains markedly increased the rate of conver-
gence of independent Bayesian runs. This strategy has
been identified previously (Beiko et al. 2006), and stud-
ies of large data sets that struggle to obtain convergence
(e.g., Miya et al. 2005; Soltis et al. 2007; Hackett et al.
2008; Parfrey et al. 2010; Thomson and Shaffer 2010) may
benefit from similar strategies.

Two partitions in our data—second codon positions
of the mtDNA and the nuclear intron MUSK—exhibited
signs of parameter interaction between invariant sites
and gamma-distributed rates (Fig. 1). A set of invari-
ant (or slowly evolving) sites can be accounted for
in 2 ways: a low proportion of invariant sites and a
low a (indicating a high proportion of slowly evolv-
ing sites) or a high proportion of invariant sites and a
corresponding high «a. For the second codon-position
partition, the 2 runs appeared to converge because like-
lihoods stabilized in the same range, but the runs did
not sample similar posterior distributions of topologies.
Issues of parameter identifiability when simultaneously
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accounting for invariant sites and gamma-distributed
rates have been demonstrated with simulated data
(Sullivan et al. 1999) and discussed in informal set-
tings (e.g., http:/ /treethinkers.blogspot.com /2009/04/

when-we-fail-mrbayes.html), but to our knowledge
have not been demonstrated in published empirical
studies. Our results suggest that omitting the invariant
sites model may be preferable in some situations.
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Ultimately, we were able to produce a robust phy-
logenetic hypothesis, as judged by congruence of re-
sults between ML and Bayesian analysis and across
multiple independent trials for each method starting
from random topologies. These results allowed us to
assess timaliid relationships and biogeographic history,
discuss analytical issues, and make taxonomic recom-
mendations for the family.

Phylogenetic Relationships

Allowing for substantial differences in taxon sam-
pling, our phylogenetic results broadly corroborate the
higher level relationships and taxonomy outlined by
Gelang et al. (2009). After removal of the 2 rogue taxa,
each of the 3 clades of core babblers received strong
support but with one notable difference compared with
Gelang et al. (2009). In our phylogeny, the 6 species of
Alcippe formed a clade strongly supported as a basal lin-
eage in clade A (Fig. 3). Gelang et al. (2009) included
a single species of Alcippe (A. poioicephala) that was
strongly supported as a basal lineage of the Pellorneinae
(Fig. 3, clade B). Our denser taxon sampling may have
influenced this difference, but gene tree—species tree dis-
cordance may have played a role as well. Individual
gene trees from each study reveal a variety of relation-
ships for Alcippe, most with weak support. The support
in our phylogeny derives largely from the TGF data,
whereas RAG-1 and ODC provide significant support
for the relationship in Gelang et al. (2009). Additional
markers and species-tree methods (e.g., Maddison and
Knowles 2006; Liu 2008) may be required to assess this
relationship further.

Babbler family limits are a matter of conjecture. Al-
strom et al. (2006) and Johansson et al. 2008 subsumed
all 5 of our clades (A-E) into an expanded Timaliidae,
but this recommendation was based on sampling only
10 and 8 species in the family, respectively. Because of
the focus on higher level relationships, subfamilies were
not identified. Gelang et al. (2009) recommended that
the Sylviidae (clade E) be retained as a family and that
the Timaliidae be split into 4 subfamilies (our clades
A-D). We mostly agree with this decision but would
retain the family Zosteropidae for clade D, rather than
subsume it as a subfamily of the Timaliidae. Species
of the traditional Zosteropidae still constitute the vast
majority of the species diversity in the clade. Further-
more, although Yuhina is distributed mostly in the Asian
mainland, zosteropids are quite unlike the core babblers;
most of their diversity lies outside of Asia and is instead
centered on oceanic islands of Wallacea and the tropical
Pacific.

Of 19 core babbler genera represented in this study by
more than one species, 12 were not monophyletic and
some, such as Garrulax and Stachyris, comprised mul-
tiple clades. Only 3 genera represented by more than
3 species (Malacopteron, Alcippe, and Schoeniparus) were
monophyletic. If not for the recent taxonomic revision
of Alcippe by Pasquet et al. (2006), Malacopteron would
have been the only well-sampled, monophyletic genus.

These results underscore both the dire state of system-
atics in even the most well known of groups but also
the tremendous ecomorphological diversity and conver-
gence within the babblers.

Four genera previously included in the Timaliidae
were strongly supported as belonging to other passerine
families. Three of the genera—Robsonius, Micromacronus,
and Leonardina—are endemic to the oceanicislands of the
Philippines, whereas Malia is endemic to Sulawesi. An-
other Philippine endemic, Hypocryptadius cinnamomeus,
which had been included in the Zosteropidae, and thus
within or close to the babblers, was recently shown to be
distantly related to any of these taxa (Moyle et al. 2009;
Fjeldsa et al. 2010). Denser outgroup sampling will be re-
quired to identify more specifically their relationships.

Several recent taxonomic revisions of babblers have
been proposed in the absence of phylogenetic evidence.
These revisions can now be compared with a phyloge-
netic hypothesis for the family, and it is apparent that
they do not remedy the poor state of babbler taxonomy.
Attempts to break up the large heterogeneous genera
often result in multiple paraphyletic groups. For ex-
ample, the monophyly of Malacopteron is sundered by
Collar and Robson’s (2007) resurrection of a monotypic
genus for Malacopteron [Ophrydornis] albogulare. Mala-
copteron is among the few examples in our phylogeny of
monophyletic genera, and we recommend that it retains
its traditional membership. Collar and Robson (2007)
were correct to split the nonmonophyletic Stachyris and
Garrulax, yet their proposed taxonomy yields multiple
genera that are still paraphyletic (e.g., Garrulax, Dry-
onnastes, Trochalopteron, Stachyris, and Stachyridopsis).
Likewise, Napothera is not monophyletic but revision
based on body size (Collar 2006) produces additional

paraphyly.

Biogeographic History and Timing of Diversification

The time estimates and biogeographic reconstruction
imply an origin and early diversification of the core
babblers in mainland Asia in the mid-Miocene. Because
they are derived from 2 secondary calibrations, our date
estimates must be considered with caution. Nguem-
bock et al. (2009) estimated the timing of diversification
within the babbler genus Illadopsis and produced dates
broadly younger than our estimates, with confidence
intervals that barely overlapped ours. We did not use
the date estimates from Nguembock et al. (2009) as sec-
ondary calibrations in our study because their estimates
are based on secondary calibrations from Barker et al.
(2004), one of the sources we also used. It is worri-
some, but not surprising, that 2 studies based on the
same secondary calibrations would produce disparate
divergence times. Nonetheless, most divergence dates
within passerine birds have been calibrated with the vi-
cariance date used by Barker et al. (2004) or secondary
calibrations therein.

The overall biogeographic pattern is of an origin in
mainland Asia with repeated colonization of other re-
gions. Unambiguous recolonization of mainland Asia
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from other regions was rare, although the direction of
colonization is ambiguous at some nodes. Asia and
Sundaland, the 2 regions that currently (or at the Last
Glacial Maximum for the islands) have land connec-
tions, had the most frequent interchange of lineages.
This supports the hypothesis that babblers are most di-
verse in mainland Asia because the family, and most
subclades, originated in Asia.

In birds, much biogeographic analysis in SE Asia has
focused at the level of genera or species complexes (e.g.,
Moyle et al. 2005; Outlaw and Voelker 2008; Reddy 2008;
Reddy and Moyle 2011). Other studies included higher
level taxa that were not very species rich (Hosner et al.
2010) or focused on subsets of the region, such as the
Philippines (Oliveros and Moyle 2010) or the Himalayas
(Johansson et al. 2007). Thus, hypotheses about diversi-
fication have necessarily been limited to regional aspects
and have been unable to address broader patterns of di-
versification in the Asian tropics, let alone interaction
with other regions. Interestingly, a vicariant hypothesis
for the generation of diversity and geographic structure
that has received increased attention involves the Isth-
mus of Kra, which separates Sundaland from Southern
Asia, the regions of highest babbler diversity, and 2 of
the regions in our biogeographic analysis. Marine trans-
gressions are hypothesized to have separated mainland
Asia from Sundaland in the Miocene and Pliocene, pro-
viding a potential vicariance event and isolation of taxa
in the 2 regions (Hughes et al. 2003; Woodruff 2003).

The hypothesis that marine transgressions across the
Isthmus of Kra during the Miocene and Pliocene were
the vicariance event that differentiated much of the
Sunda and Indochinese biotas is not supported by our
data. Ambiguous area reconstructions at some internal
nodes preclude identification of all Asia/Sunda splits,
but we can identify several unambiguous relationships
and compare them with ages of marine transgres-
sions. Several Sunda species are clearly derived from
mainland Asian relatives (e.g., G. mitratus, G. palliatus,
A. brunneicauda, Pomatorhinus montanus, and Stachyris
rufifrons), yet their estimated divergence times span
1.2-7.0 Ma, and several are nonoverlapping. The origin
of the genus Malacopteron (10.8-15.0 Ma) and the split
between the clades containing Stachyris nigriceps and Po-
matorhinus hypoleucos (7.6-10.8 Ma) also represent fairly
clear disjunctions between Asia and Sundaland. Thus,
biogeographic patterns potentially caused by vicariance
at the Isthmus of Kra span 1.2-15.0 Ma, and we can con-
clude that little, if any, of the geographic structure was
caused by a single vicariant event at the Isthmus of Kra.

The isthmus is now a narrow corridor of land
approximately 70 km across in places, but at the last
glacial maximum the connection between Indochina
and Sundaland was greater than 1000 km across. Fur-
thermore, climate and forest cover changes in the Pleis-
tocene altered the distribution of suitable habitat for
forest dwelling species. Refined interpretation of sea
level change in the Neogene indicates that the isth-
mus was never breached in the past 10 million years,
and faunal turnover in the region is best explained by

the cycle of habitat expansion and contraction in the
Plio-Pleistocene (Woodruff and Turner 2009). Marine
transgressions at the isthmus have been used to calibrate
the timing of diversification (Fuchs et al. 2006, 2008) and
the rate of molecular evolution (Weir and Schluter 2008)
in birds, but the accuracy and precisions of such calibra-
tions seems questionable.

Babblers colonized Africa twice, leading to moder-
ately diverse radiations. Both colonization events are
inferred to have originated from mainland Asia but at
different times. The wet-forest adapted Illadopsis are in-
ferred to have colonized Africa from 10.0 to 14.1 Ma,
whereas the more dry-adapted and open country genus
Turdoides is inferred to have colonized Africa from 6.4 to
9.9 Ma. Although the specific dates are open to interpre-
tation, it is notable that the confidence intervals do not
overlap and thus it is unlikely that the 2 events were
linked to the same climate/earth history events. The
sequence of colonization events makes intuitive sense
considering that southern Asia, the putative coloniza-
tion route, experienced increased seasonal aridity in the
Late Miocene (Molnar 2005; Lu et al. 2010; Molnar et al.
2010) accompanied by expansion of more open habitats
(Barry et al. 1985). Indeed, Turdoides species currently in-
habit drier parts of southern Asia and the Middle East,
whereas most of the closest relatives of Illadopsis are
currently restricted to the wet forests of Southeast Asia
and Sundaland.

A surprising finding of this study is that most Philip-
pine babblers are not babblers at all. These results add to
previous findings (Cibois et al. 2002; Moyle et al. 2009)
that removed Philippine members of Stachyris from the
family. The result is that the oceanic islands of the Philip-
pines only host 2 species of babblers (P. mindanensis and
M. striaticeps) and can be considered a peripheral region
in terms of biogeographic history of the family. Further
work is required to identify the affinities of several of
these Philippine taxa (in preparation).

Taxonomic Recommendations

We recommend the following taxonomic arrangement
for the Timaliidae based on the results from this study,
Gelang et al. (2009), Cibois (2003), and Pasquet et al.
(2006). Species level taxonomy follows Clements (2007).
Species following a genus name in square brackets have
been moved from that genus.

FAMILY Timaliidae

SUBFAMILY Timaliinae

Timalia (pileata)

Mixornis ([Macronus] gularis, flavicollis, kelleyi)

Dumetia (hyperythra)

Rhopocichla (atriceps)

Macronus (striaticeps, ptilosus)

Cyanoderma  ([Stachyris] chrysaeum, erythropterum,
melanothorax, pyrrhops, ruficeps, ambiguum, rufifrons)

Spelaeornis (caudatus, badeigularis, troglodytoides, formo-
sus, chocolatinus, longicaudatus)

Pomatorhinus (ferruginosus, ochraceiceps, ruficollis, hors-
fieldii, schisticeps, montanus, [ Xiphirhynchus] superciliaris)
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Megapomatorhinus ([Pomatorhinus] hypoleucos, erythro-
cnemis, erythrogenys, swinhoei)

Stachyris (grammiceps, nigricollis, maculata, nigriceps,
poliocephala, leucotis, thoracica, oglei, striolata, rodolphei,
herberti, nonggangensis, [ Sphenocichla] humei)

SUBFAMILY Pellorneinae

Malacopteron (palawanense, magnirostre, affine, cinereum,
magnum, albogulare)

Gampsorhynchus (rufulus)

Schoeniparus ([Alcippe] cinereus, castaneceps, rufogularis,
brunneus, dubius)

Hlladopsis (fulvescens, rufipennis, pyrrhoptera, cleaveri, al-
bipectus, rufescens, puveli, [Ptyrticus] turdina)

Pellorneum (ruficeps, capistratum, fuscocapillus, palustre,
albiventre, tickelli, pyrrogenys, [Malacocincla] malaccense,
cinereiceps, [Trichastoma] rostratum, celebense, bicolor)

Kenopia (striata)

Napothera (epilepidota, [Jabouilleia] danjoui, naung-
mungensis, [Rimator] malacoptila)

Ptilocichla (leucogrammica, mindanensis, falcata)

Turdinus ([Malacocincla] abbotti, sepiarius, perspicillatus,
[Napothera] macrodactylus, rufipectus, atrigularis, marmora-
tus, crispifrons, brevicaudatus, crassus)

Graminicola (bengalensis)

SUBFAMILY Leiothrichinae

Alcippe (variegaticeps, ludlowi, brunneicauda, poioi-
cephala, morrisonia, pyrrhoptera, peracensis, nipalensis,
grote)

Grammatoptila ([Garrulax] striata)

Cutia (nipalensis)

Turdoides (nipalensis, altirostris, caudata, earlei, gularis,
longirostris, malcolmi, squamiceps, fulva, aylmeri, rubigi-
nosa, subrufa, striata, rufescens, affinis, reinwardtii, tene-
brosa, sharpie, hartlaubii, melanops, squamulata, leucopygia,
bicolor, hypoleuca, hindei, leucocephala, plebejus, jardineii,
gymmogenys, [ Kupeornis] gilberti, rufocincta, chapini, [ Phyl-
lanthus] atripennis)

Garrulax (cinereifrons, palliatus, rufifrons, perspicillatus,
leucolophus, monileger, lugubris, strepitans, milleti, maesi,
merulinus, canorus)

lanthocincla ([Garrulax] sukatschewi, cineracea, rufogu-
laris, konkakinhensis, ocellata, lunulata, bieti, maxima, pec-
toralis, albogularis, ruficollis, nuchalis, chinensis, vassali,
galbana, delesserti, gularis, davidi, caerulata, poecilorhyncha,
mitrata, sannio, [Babax] lanceolata, waddelli, koslowr)

Trochalopteron ([Garrulax] cachinnans, jerdoni, lineatum,
virgatum, subunicolor, austeni, squamatum, elliotii, variega-
tum, henrici, affine, morrisonianum, erythrocephalum, ngo-
clinhensis, yersini, formosum, milnei)

Heterophasia (capistrata, gracilis, melanoleuca, desgodinsi,
auricularis, pulchella, picaoides)

Leiothrix (argentauris, lutea)

Minla (ignotincta, [Heterophasia] annectans)

Crocias (langbianis, albonotatus)

Liocichla (omeiensis, bugunorum, steerii, phoenicea)

Actinodura (sodangorum, nipalensis, waldeni, souliei,
morrisoniana, egertoni, ramsayi, [Minla] cyanouroptera,
strigula)

Megapomatorhinus.—Among the genus names used in
the past for the group/members of the group now
newly separated from Pomatorhinus based on molecular-
genetic markers, none is available according to the
Code (ICZN 1999): Orthorhinus Blyth 1844: 124 is pre-
occupied by Orthorhinus Schonherr 1825, Coleoptera;
Erythrogenys E. C. S. Baker 1930, is preoccupied by
Erythrogenys Brandt 1841, itself a nomen emendatum
of Gould’s Erythrogonys. Hodgson’s (1836, Asiatic Re-
searches vol. 20: p. 180) use of the name Erythrogenys
is without a proper genus description and the origi-
nal description in the paper refers to a new species
only; thus also this name is not available. We there-
fore formally establish here Megapomatorhinus gen. nov.,
diagnosed by its general appearance and proportions
like Pomatorhinus babblers but generally larger, and
in adult birds a curved bill roughly as long as the
head, upperparts olive brown to brown, white under-
parts gradually becoming rusty or brown toward the
vent, on breast and/or on flanks striped/dotted light
to dark brown/umber, white supercilium lacking or, if
present, thin and not reaching distally in front of the
eyes, sexes alike; the type species is Orthorhinus hypoleu-
cos Blyth 1844; molecular-genetically studied material:
AMNH DOT5531, AMNH DOT5179, BMNH 2000.5.22,
KUNHM 6715. The name acknowledges the similarity
to species of Pomatorhinus, but also the large, heavy-
bodied, and large-billed nature of species in the named
genus.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found in the Dryad data
repository (doi:10.5061/dryad.100jc764).
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