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Abstract.—Many research groups are estimating trees containing anywhere from a few thousands to hundreds of thousands
of species, toward the eventual goal of the estimation of a Tree of Life, containing perhaps as many as several million leaves.
These phylogenetic estimations present enormous computational challenges, and current computational methods are likely
to fail to run even on data sets in the low end of this range. One approach to estimate a large species tree is to use phylo-
genetic estimation methods (such as maximum likelihood) on a supermatrix produced by concatenating multiple sequence
alignments for a collection of markers; however, the most accurate of these phylogenetic estimation methods are extremely
computationally intensive for data sets with more than a few thousand sequences. Supertree methods, which assemble
phylogenetic trees from a collection of trees on subsets of the taxa, are important tools for phylogeny estimation where
phylogenetic analyses based upon maximum likelihood (ML) are infeasible. In this paper, we introduce SuperFine, a meta-
method that utilizes a novel two-step procedure in order to improve the accuracy and scalability of supertree methods. Our
study, using both simulated and empirical data, shows that SuperFine-boosted supertree methods produce more accurate
trees than standard supertree methods, and run quickly on very large data sets with thousands of sequences. Furthermore,
SuperFine-boosted matrix representation with parsimony (MRP, the most well-known supertree method) approaches the
accuracy of ML methods on supermatrix data sets under realistic conditions. [Algorithms; maximum likelihood; MRP;

phylogenetics; simulation; supertrees.]

Reconstruction of phylogenetic trees presents sub-
stantial computational difficulties. High-throughput
sequencing projects have enabled the collection of data
for many sets of species, but joint analysis of these data
can present certain practical difficulties due to the num-
ber of taxa involved and the amount of sequence data.
In some cases, alignments of multiple-gene data sets
for overlapping sets of taxa can be concatenated into a
single supermatrix (where the sequences that are miss-
ing for some taxa are coded as missing data), and this
supermatrix can then be analyzed using phylogenetic
estimation methods such as maximum likelihood (ML).
Although progress has been made on developing very
fast ML heuristics for 10* or even 10° taxa (Price et al.
2010), the most accurate of the ML methods, RAXML
(Stamatakis 2006) and GARLI (Zwickl 2006), are much
slower and therefore cannot analyze data sets with
many tens of thousands of sequences without extensive
use of supercomputers. In addition, accurately aligning
a large number of sequences is itself a computation-
ally intensive problem (NP-hard in some formulations;
Wang and Jiang 1994), and the most accurate methods
are unable to run on very large data sets (Liu et al. 2010).

Supertree methods construct trees from smaller trees
for overlapping subsets of the taxa. These are an appeal-
ing alternative to supermatrix analyses for large data
sets because they do not require phylogenetic analysis
of a large sequence alignment. Many supertree methods
have been developed, see Bininda-Emonds (2004) for an
overview of early methods, and also Baum and Ragan
(2004), Burleigh et al. (2004), Chen et al. (2006), Cotton
and Wilkinson (2007), Steel and Rodrigo (2008), Bansal
et al. (2009), Ranwez et al. (2010), and Swenson et al.
(2010a, 2010b). Of these methods, matrix representation

with parsimony (MRP; see Baum 1992; Ragan 1992), is
by far the most frequently used. We note that MRP is
NP-hard (Foulds and Graham 1982), and so methods for
MRP are based upon heuristics and are not guaranteed
to produce optimal solutions.

Studies comparing different supertree methods have
found that MRP and some other supertree methods, for
example, Minflip (Chen et al. 2006), Quartets MaxCut
(QMC) (Snir and Rao 2010), and Quartet Imputation
(Holland et al. 2007), produce reasonably accurate trees.
However, only MRP is both highly accurate and capa-
ble of being run successfully on data sets containing
more than a few hundred taxa (Swenson et al. 2010a,
2010b). Thus, MRP is a popular supertree method that
can run on large data sets and that has been shown
to produce trees that match or improve upon the ac-
curacy of other supertree methods. However, MRP
can return supertrees that have relationships that are
contradicted by all the input trees (Bininda-Emonds
and Bryant 1998; Pisani and Wilkinson 2002; Bininda-
Emonds 2003; Wilkinson et al. 2004, 2005), a property
that is clearly undesirable. In addition, MRP is not statis-
tically consistent, in the sense that for some distributions
on input (source) trees, MRP is not guaranteed to con-
verge to the true supertree as the number of source trees
increases (Steel and Rodrigo 2008). Thus, although MRP
has generally outperformed other supertree methods in
terms of topological accuracy and/or scalability, it fails
to have other desirable properties.

The major alternative to supertree methods is com-
bined analysis (also known as “supermatrix analysis”).
In a combined analysis, alignments for different markers
are concatenated, and a phylogeny is then estimated on
the resultant supermatrix. Under the assumption that all
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markers evolve down the same tree (albeit potentially
with different branch lengths), Swenson et al. (2009)
and Swenson, Barbangon, et al. (2010) showed that com-
bined analysis using ML produces more accurate trees
than MRP and other supertree methods. Therefore, de-
velopment of fast supertree methods that match, or at
least more nearly approach, the accuracy of combined
analyses would be very useful for phylogenetic infer-
ence on large numbers of taxa and in assembling the
tree of life.

With this set of issues in mind, we have devel-
oped SuperFine, a new approach for supertree in-
ference. Because SuperFine is designed to work with
any existing supertree method, it is a “meta-method”
(Huson, Nettles, et al. 1999; Huson, Vawter, et al. 1999;
Warnow et al. 2001; Roshan et al. 2004a, 2004b; Moret
et al. 2005; Warnow 2006). Generally, meta-methods
are algorithms that work with any arbitrary “base”
method for the problem they are designed to solve. Su-
perFine has two steps. In the first step, it produces an
initial, incompletely resolved supertree, using an exist-
ing method called the strict consensus merger (SCM)
(Huson, Nettles, et al. 1999; Roshan et al. 2004b) (an
extension of the strict consensus tree method of Day
1985), applied to two trees at a time until all the trees
are merged into a single tree. The second step refines
the SCM tree using the base supertree method and the
input source trees.

We have tested SuperFine with two different base su-
pertree methods, MRP and QMC. Thus, SuperFine+MRP
refers to SuperFine used with MRP in the resolution
step, and similarly SuperFine+QMC refers to SuperFine
used with QMC in the resolution step. SuperFine+MRP
is, in a sense, a heuristic for the MRP optimization
problem; however, unlike general MRP heuristics, it
constrains the search to only those trees that refine
the SCM tree computed in the first step. Thus, Su-
perFine+MRP searches for solutions to MRP but only
in the space of trees that refine the SCM tree. Similarly,
SuperFine+QMC is a heuristic for the quartet satisfia-
bility optimization problem, with the search also con-
strained to refinements of the SCM tree. This two-step
approach ensures that the tree it returns will contain at
least those splits that are present in the SCM tree it com-
putes, and reduces the time taken to find its solution.

Our extensive study on large simulated data sets
shows that SuperFine+MRP and SuperFine+QMC (Su-
perFine based upon MRP and QMC, respectively)
yield more accurate supertrees compared with MRP
or QMC alone. We also compare SuperFine+MRP and
SuperFine+QMC to a number of other supertree meth-
ods alone (i.e., without SuperFine), and find that none of
those other methods produces supertrees that are as ac-
curate as those produced by the SuperFine-enhanced
versions of MRP and QMC. Both SuperFine+MRP
and SuperFine+QMC are reasonably efficient, but Su-
perFine+MRP runs particularly quickly (finishing in
well under an hour on all biological data sets inputs
we studied, and in 3 h on the 1000 taxon simulated
data sets), and can analyze larger data sets than can

SuperFine+QMC. Finally, we also show that both Su-
perFine+MRP and SuperFine+QMC approach the ac-
curacy of combined analysis using ML under realistic
model conditions.

MATERIALS AND METHODS
The SuperFine Meta-method

The input to the SuperFine algorithm is a set of phylo-
genetic trees (called “source trees”) for overlapping sub-
sets of the full set of taxa for which a supertree is to be
reconstructed, and the base supertree method. Source
trees need only include a topology (i.e., branch lengths
are not required), and they do not have to be fully re-
solved or rooted.

SuperFine uses a novel two-stage algorithmic strat-
egy: the first stage produces a very conservative and
typically highly unresolved estimate of the supertree,
and the second stage uses the given base supertree
method and the source trees to refine the tree (Fig. 1).

Stage 1: Strict Consensus Merger—SuperFine’s first stage
merges the source trees, two at a time, using the SCM
technique. SuperFine is using DendroPy (Sukumaran
and Holder 2010) for the strict consensus merger (as
well as for other tree operations). The SCM of two trees
first contracts any branch in either tree that conflicts
with the other tree and then superimposes the trees,
contracting additional branches if there is ambiguity
about how to superimpose the trees (Fig. 2 and Ap-
pendix). Therefore, the branches in the SCM tree are
supported by at least one tree and are not contradicted
by either of the trees. After merging the two source trees
into one tree, we repeat the process on a new pair of
source trees until all the source trees have been merged
into one tree.

Although the SCM of two trees is deterministic, the
order in which three or more trees are merged can af-
fect the resultant supertree. We experimented with four
different rules for picking the next pair of trees to be
merged, including three rules that use the number of
taxa in common between two trees, and one rule that
uses the number of taxa unique to one or the other tree.
We found that the three methods that focus on maximiz-
ing (in various ways) the number of shared taxa gave
better results than the method that tried to minimize
the number of unique taxa. Differences in outcomes be-
tween the three methods that sought to maximize the
number of shared taxa were rather small. We therefore
picked one—maximum backbone number—as our cri-
terion. This method computes the number of taxa in
common between every pair of trees, and merges the
two that have the largest intersection. If there are ties,
then the first pair found that achieves the maximum is
merged. For more details, see Appendix and Swenson
(2008).

Stage 2: Refining polytomies.—The next stage iterates
over the polytomies in the SCM supertree, resolving
each polytomy based on the topologies of the source
trees, and using the given base supertree method. Let 7
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FIGURE 1. Schematic representation of the algorithmic strategy of SuperFine+MRP. Source trees 515, are combined pairwise to produce an
SCM tree, which retains only internal branches that are compatible with all of the source trees. Each polytomy in the SCM tree is then refined

by running MRP on modified source trees (see text).

be a set of source trees, let T be an SCM supertree on 7T,
and let L(T) denote the taxon-set of T. Let v be a node of
degree d in T such thatd > 4 (i.e., v is a polytomy of T).
The polytomy v is refined, producing a tree T’ that is a
refinement of T, using the following procedure.

1) Root T at v, and let vy, ..., v, be the children of v
and T3, ..., T, be the subtrees rooted at vy, ...,y
respectively (Fig. 3a).
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2) Compute a set 7T, of re-encoded source trees based
onTy,..., Ty Let ¢ : L(T) — {1,...,d} be defined
by ¢(x) =i for x € L(T;). Note that for every
x € L(T), x is a taxon in exactly one of these d sub-
trees; thus, ¢ is well defined. Using this mapping,
relabel the taxa of the source trees (Fig. 3b). Then,
for each source tree, recursively delete any sibling
pairs (or groups of sibling taxa if a source tree is
nonbinary) that share label | and attach a single

s

s;

FIGURE 2. SCM of two trees S1 and S. In Si and S}, the strict consensus of S; and S; restricted to their common taxon set is shown in bold.
In S and S/, the branches that are involved in a collapsing of a path in 5] or S} are shown in bold. T is the SCM tree of S; and S,.

¥202 I4dy 61 U0 1senb Aq G| /G¥9L /v L 2/2/19/e101e/0IgsAs/woo dnoolwapede//:sdiy woly papeojumo(



2012

SWENSON ET AL.— SUPERFINE: FAST AND ACCURATE SUPERTREE ESTIMATION

217

3)

4)

taxon labeled [ at the node where the siblings were
attached (Fig. 3c). By Theorem 1.4 (Appendix),
applying this process to any source tree in 7 will
result in a re-encoded tree with at most one taxon
with each label. Thus, each member of 7, is a
phylogenetic tree whose taxon-set is a subset of
{1,...,d}.

Apply the base supertree method to 7, to obtain
a tree T* taxon labeled by the set {1,...,d} (see
Figs. 3d and 3e for this step using MRP as the base
supertree method).

Construct T’ by attaching each T; onto T*, replac-
ing taxon i in T* with T;, for each i € {1,...,d}
(Fig. 3f).

A few points are worth noting about this technique.

First,

the order in which polytomies are refined does

not impact the outcome of the algorithm. Second, be-
cause the supertree method for resolving polytomies
is applied to profiles of re-encoded source trees, each
of which has at most one taxon with each label, each
(Stage 2, Step 3) supertree analysis is performed on
source trees with at most d taxa, where d is the max-
imum degree of any node in the SCM tree produced
in the first stage. As a result, the running time of the
refinement step is largely determined by the maxi-
mum degree of any node in the SCM tree. When that
maximum degree is not too large, the refinement step
can run quite quickly, even when the base supertree
method used to resolve the polytomies is generally
computationally intensive. Finally, Theorem 1.1 (Ap-
pendix) states that the SCM tree never has relation-
ships that are violated by any source tree. Thus, the
SuperFine method begins with a supertree that has
good theoretical properties.
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FIGURE 3. Schematic representation of the second step of the algorithmic strategy of SuperFine+MRP, in which we refine the SCM tree
produced in the first step. The steps here refer to the SCM tree T/, polytomy u, and source trees shown in Figure 1. a) The deletion of the
polytomy u from the tree T’ partitions T’ into four rooted trees, Tq, T2, T3, and T4. b) The leaves in each of the four source trees are relabeled by
the index of the tree T; containing that leaf, producing relabeled source trees S7, S}, S%, and S),. For example, the relabeled version of S, = ac|bd
is 5} =12|34. ) Each S} is further processed by repeatedly replacing sibling nodes with the same label, until no two siblings have the same label;
this results in trees S{, S5, S5, and S3. d) The MRP matrix is shown for the four source trees, including only the parsimony informative sites;
thus, S§ does not contribute a parsimony informative site and is excluded. e) The result of the MRP analysis on the matrix given in (d). f) The
tree resulting from identifying the root of each T;,i =1, 2, 3,4, with the node i in the tree from (e).
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SuperFine+ MRP—SuperFine+MRP is SuperFine with an
MRP heuristic used to refine the polytomies in the SCM
tree. We experimented with various ways of running
the MRP heuristic, and picked the parsimony ratchet
(Nixon 1999) implemented for PAUP* (Swofford 2002)
because it produced good results. We ran the parsimony
ratchet with 100 random samples (with replacement)
of the input sequences, each sample analyzed with TBR
branch swapping, saving the best 201 trees. We returned
the greedy (extended majority) consensus of the best
MRP trees found in each analysis.

SuperFine+QMC.—SuperFine+QMC is SuperFine with
the QMC method, used as a supertree method, to re-
fine the polytomies in the SCM tree. QMC is a heuristic
that takes a set of quartet (four-leaf) trees as input,
and attempts to find a tree on the full set of taxa that
agrees with the maximum number of its input quartet
trees (an NP-hard problem) (Jiang et al. 2001). QMC
uses a divide-and-conquer technique, combined with
randomness, to produce a solution to the optimization
problem that is not guaranteed to be optimal, but which
performs well in practice. In order to run QMC as a
supertree method, we replaced every source tree with
its set of induced quartet trees and computed the union
of these sets. We then applied the QMC heuristic in de-
fault mode to produce a tree on the full set of taxa. By
design, this use of QMC involves computing the full set
of quartet trees for every source tree. When all source
trees are small, this method is reasonably fast; however,
when source trees are not small, the representation of
the source trees as quartet trees can be prohibitively
expensive. However, on those supertree problems for
which QMC can be used as a supertree method, it pro-
duced supertrees that matched or improved upon the
topological accuracy of MRP (Swenson et al. 2010a,
2010b).

By contrast, SuperFine+QMC only needs to apply
OMC to sets of quartet trees generated when analyzing
polytomies. By construction, when SuperFine+QMC
resolves a polytomy of degree d, it applies QMC to a
collection of re-encoded source trees, each on at most d
leaves. Thus, SuperFine+QMC can be applied to larger
data sets than QMC can be applied to, as long as the
polytomies are not of too high degree.

Other methods—We compare SuperFine+MRP and Su-
perFine+QMC to MRP, MinFlip (Chen et al. 2006), Phy
SIC (Ranwez et al. 2007), SFIT (Creevey and Mclnerney
2005), Q-imputation (Holland et al. 2007), Robinson-
Foulds Supertree (RFS; Bansal et al. 2009), and QMC
used as a supertree method (as described above). We
ran the MRP analysis using the same parsimony ratchet
analysis as we used in SuperFine+MRP, and we ran
QOMC (as a supertree method) using the same QMC
analysis as used in SuperFine+QMC. We ran MinFlip,
PhySIC, SFIT, Q-Imputation, and RFS in their default
settings.

Finally, we also performed a combined analysis using
RAXML in its default (and accurate) setting to infer a

GTR+Gamma ML tree for the simulated data sets. We
did not perform a partitioned analysis on the concate-
nated alignment, and this potentially reduces the accu-
racy of the combined analysis tree.

We omitted methods that are not guaranteed to
produce “plenary” supertrees (where a plenary su-
pertree is one that includes all the taxa in the input
source trees). Thus, we omitted PhySIC_IST, which
failed to produce a plenary supertree in our studies.
We also omitted methods that had not been shown to
be promising in comparison with MRP, or which were
not available in software (such as the ML supertree,
Steel and Rodrigo 2008 or the majority rule supertree,
Cotton and Wilkinson 2007).

All but one of the empirical data sets we examined
included roots for their source trees, enabling us to an-
alyze these data sets using methods that require root-
ings (i.e., MinFlip, PhySIC, and RFS) without having to
estimate the location of the root. However, our simula-
tion protocol produces unrooted source trees. In these
cases, in order to be able to compute supertrees using
these methods, we rooted each source tree in the simu-
lated data sets on the midpoint of its longest path, based
upon the ML branch lengths. This technique is one of
the standard ways to locate the root, but it has the po-
tential to introduce error into the rootings, and hence
may reduce the accuracy of the supertrees estimated us-
ing these methods.

For methods, such as MRP, that returned more than
one supertree for a given data set, we show results for
the greedy consensus of all such trees. The greedy con-
sensus builds a consensus tree by adding the splits in the
input trees to the majority consensus tree, according to
the frequency with which the split appears, until no ad-
ditional split can be added. Thus, the greedy consensus
is a refinement of the majority consensus.

For the combined analysis, the source tree data sets
were concatenated into a supermatrix, and ML trees
were inferred on the concatenated data sets using
RAXML (Stamatakis 2006), version 2.2.0. Details regard-
ing software versions and commands we used are given
in online Appendix 1 (available at http://www.sysbio.
oxfordjournals.org).

Simulated data sets

We used the simulated source tree data sets from
Swenson et al. (2009) and Swenson, Barbancon, et al.
(2010). These have realistic patterns of missing data,
reflecting both biological processes and taxon sampling
strategies used by systematists in phylogenetic studies.
Swenson et al. (2009) and Swenson, Barbancon, et al.
(2010) simulated evolution of genes down the model
trees, modeling the birth and death (gain and loss) of
each gene. Two types of source trees were generated on
the model trees: clade-based source trees (each tree be-
ing a dense sample within a specific clade of the model
tree), and scaffold source trees (a random sampling of
a proportion of the taxa throughout the model tree).
Scaffold trees are “backbone trees” used to relate the
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clade-based source trees to one another and are similar
to higher level taxonomic trees that provide the relation-
ships among lower level taxonomic groups for which
clade-based trees are produced. The proportion of taxa
from the model tree that is sampled in the scaffold tree
(called the scaffold density) is known to have a substan-
tial impact on supertree estimation accuracy when using
MRP (Swenson et al. 2009; Swenson, Barbancon, et al.
2010), with supertrees generally being more accurate
when scaffold trees are more densely sampled. We pro-
duced scaffold trees of four densities (20%, 50%, 75%
and 100%), in order to include a range of conditions that
include ones typical of systematic studies (low scaffold
densities) as well as ones that might favor supertree
analyses.

We generated supertree data sets with 100, 500, and
1000 taxa, with each subtree data set input consisting of
a number of clade-based source trees and one scaffold-
based source tree. In order to assess the statistical signif-
icance of our results, we produced 30 replicates for each
supertree input condition with 100 or 500 taxa, and 10
replicates for each supertree input condition with 1000
taxa. The details for how we generated the supertree
data sets differ slightly for the different numbers of
taxa. We begin our description with how we generated
the 100-taxon supertree data sets, and then describe
the generation process for the 500- and 1000-taxon
data sets.

Each 100-taxon supertree problem input consists of
five clade-based source trees and one scaffold-based
source tree. Each clade-based source tree is produced
by a RAxML analysis of a matrix produced by con-
catenating three different nonuniversal gene data sets,
and each scaffold-based source tree is produced by a
RAXML analysis of a matrix produced by concatenating
four universal gene data sets. Thus, each 100-taxon
supertree problem has six source trees, based in total on
19 genes.

We now briefly describe how we generate the gene
data sets (see Swenson et al. 2009; Swenson, Barbancon,
et al. 2010 for details). Each gene data set (whether
universal or non-universal) consisted of sequences
all of length 500, and were produced by simulating
GTR+Gamma evolution down a model tree with the
desired number of taxa; however, the GTR+Gamma
parameters (branch lengths and substitution matri-
ces) differ slightly between the different gene data
sets. The model trees are generated using a pure-birth
process tree using r8s, and then the branch lengths
are modified randomly to deviate the tree from ultra-
metricity.

Biological data sets

The biological data sets we used were from four
published supertree studies and one combined anal-
ysis study: temperate herbaceous papilionoid legumes
(THPL, 558 taxa, 19 source trees, see Wojciechowski
et al. 2000), comprehensive papilionoid legumes (CPL,
2228 taxa, 39 source trees, see McMahon and

Sanderson 2006), marsupials (267 taxa, 158 source trees,
see Cardillo et al. 2004), placental mammals (116 taxa,
726 source trees, see Beck et al. 2006), and seabirds (121
taxa, 7 source trees, see Kennedy and Page 2002). The
biological source trees were produced using a variety
of phylogeny estimation methods, including distance-
based, parsimony, and likelihood methods. In all cases,
we used the source trees provided in the original su-
pertree studies, modified (when necessary) to account
for ambiguously identified taxa; see online Appendix
2 for further details. All but one of these biological
data sets came with rooted source trees, produced us-
ing outgroups by the authors of the studies; we used
these rootings in order to produce supertrees for these
data sets using the methods that require rooted source
trees. The remaining data set (CPL) came with align-
ments for each marker; we computed RAXML trees on
each of these alignments to produce the source trees for
our analyses. Since the data set did not have an out-
group, we rooted the source trees using the midpoint
method.

Measurements

Results on the simulated data were assessed using
various criteria. Most importantly, we examined topo-
logical accuracy using false-positive (FP), false-negative
(FN), and Robinson-Foulds (RF) error rates of the in-
ferred trees compared with the model trees. The FP
rate is the proportion of internal branch appearing in
the inferred tree that are not in the model tree, and the
FN rate is the proportion of internal branches in the
model tree that are missing from the inferred tree. For
those cases where the number of internal branches was
0, we set the corresponding error rate to 0. Finally, the
RF rate is the average of these two values. When the
estimated and model trees are binary, all three rates are
the same.

In general, evaluation of supertree methods on bi-
ological data sets is difficult for several reasons. Most
importantly, the true tree is generally not known, so
absolute accuracy cannot be determined. Some stud-
ies have used measures of topological distance (typ-
ically the RF distance) to the source trees as a proxy
for topological accuracy (e.g., Snir and Rao 2010 and
Bansal et al. 2009). However, as noted in Swenson et al.
(2010a, 2010b), topological distance is only weakly cor-
related with topological accuracy. Specifically, on sim-
ulated data, Swenson et al. (2010a) and Swenson et al.
(2010b) found that Spearman rank correlations between
total topological distance to the source trees and topo-
logical error with respect to the true tree were below
60% for all three ways of defining the topological dis-
tance. Therefore, only when two supertree methods
have a relatively large difference in topological dis-
tances to the source trees is it likely the method with
the smaller distance has a definite improvement in
topological accuracy (Swenson et al. 2010a, 2010b). For
this reason, although we present total topological dis-
tance measures for evaluating the supertree methods on
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biological data, we are cautious in interpreting the
topological distances to source trees.

For the biological data sets, we report the total topo-
logical distance to the source trees using three mea-
sures: SumFN (total number of branches in source trees
missing from the supertree), SumFP (total number of
branches in the supertree that are not in the source
trees), and SumRF (total bipartition distance). Each
measure is expressed as a percentage of the maximum
possible, and so varies between 0 and 100. Although the
SumRF distance is the more typical measure,it penal-
izes for resolution in the supertree that is not explicitly
present in the source trees. SumRF is therefore, only
appropriate when all source trees are completely re-
solved. Furthermore, SumFP is optimized by a tree
without any internal branches (i.e., star trees). Since
biological supertree data sets often have unresolved
source trees, SumFN is a better metric because it prop-
erly handles incomplete resolution in the source trees.
Furthermore, when the source trees and supertrees
are all completely resolved, then SumRF, SumFN, and
SumFP are all identical; thus, there is no advantage
to using SumRF instead of reporting SumFN and
SumFP.

We evaluated the performance of all estimated trees,
that is, the SCM and other supertree methods, and
trees estimated using combined analysis using ML.
We evaluated the accuracy of the estimated supertrees
using the three topological error measures (FN, FP,
and RF rates), and also computed the topological dis-
tances of these supertrees to source trees. We computed
topological distances between estimated supertrees for
each biological data set (see online Appendix 3). Fi-
nally, the resolution of the SCM tree determines how
different the SuperFine-boosted methods are from their

base supertree methods, and so we also evaluated the
resolution of the SCM tree.

RESULTS
Performance of SCM

Results on simulated data.—Figure 4 compares the FN
and FP rates of SCM, SuperFine+MRP, and CA-ML
on the 1000-taxon simulated data sets. SCM has much
lower FP rates than the other methods (about 5%, as
compared with 10-15% for the other methods), but also
has much higher FN rates. The low FP rates show that
almost all of the branches in the SCM tree are in the
true tree. This is not surprising since the FPs in the SCM
tree are constrained to those that at least one source tree
has, and all the source trees support. Although the sec-
ond stage usually resolves the tree further, it will never
undo these universally supported (and highly accurate)
bipartitions. The higher FN rates (18-23%) produced by
the SCM tree, in comparison with the other methods
(10-15%), show that the SCM tree is only partially suc-
cessful at estimating the true tree. On the other hand,
the SCM tree is quite well resolved (the resolution varies
between 80% and 85%).

Results on biological data—SCM supertrees computed
on empirical data sets had various levels of resolution.
One data set (placental mammals) had a very poorly
resolved SCM tree, with one polytomy of degree 115 of
a possible 116; the least resolved other tree (Marsupials)
had one polytomy of degree 200 of a possible 267, but
all the others were much more resolved. Thus, the SCM
tree was less well resolved on the biological data sets
than on the simulated data sets, but was well resolved
on some.

O SCM
¥ SuperFine
B CA-ML
0.2- 0.2-
& Y o L
e g
pd ¥ o
% o01- TR
1 | I I | | | I
25 50 75 100 25 50 75 100
Scaffold factor (%)

FIGURE 4. Comparison of SCM, SuperFine+MRP, and combined analysis using maximum likelihood (CA-ML) on simulated 1000-taxon data
sets, as a function of the scaffold factor (proportion of the taxa in the scaffold data set). Topological error is given by (a) the FN rate, which is the
proportion of internal branches in the true tree missing from the estimated tree, and (b) FP rate, which is the proportion of internal branches in
the true estimated tree that are not in the true tree. Each point shows the average of 10 data sets and a standard error bar.
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Performance of Superfine+MRP

We now explore the performance of SuperFine+MRP
in comparison with other supertree methods and with
CA-ML. We do not show results for all methods on all
data sets for the following reasons. First, some methods
either failed to run (due to memory requirements) or
failed to complete within 2 weeks; these results are ex-
cluded. Second, for the 1000-taxon data sets, we only ran
methods that had acceptable accuracy on the 500-taxon
data sets; therefore, SFIT and PhySIC were excluded.
We attempted to run Q-imputation on the 500-taxon
data sets, but it failed to run on any of these data sets;
we therefore did not attempt to run it on the 1000-taxon
data sets. Also, in order to make fair comparisons of
the methods, we only included the results from data
sets on which all of the included methods completed.
Finally, we discuss QMC and SuperFine+QMC in a later
section.

Topological error and running time on simulated data.—
We compared SuperFine+MRP with SFIT, PhySIC, Q-
Imputation, MRP, MinFlip, RFS, and CA-ML, except as
noted above, and focus the discussion on the missing
branch (FN) rate. Results on simulated data showed sev-
eral clear trends. First, for all scaffold factors and taxon
numbers, the most accurate supertree method was con-
sistently SuperFine+MRP, although the degree of im-
provement over the other methods varied with these pa-
rameters (Fig. 5 shows results for MRP, SuperFine+MRP,
MinFlip, RFS, and CA-ML on 1000-taxon data sets; re-
sults for the other methods and for other numbers of
taxa are given in online Appendix 3). Usually MRP was
the second most accurate supertree method, although
on a few model conditions (the 100-taxon data sets with

scaffold densities of less than 100%) Q-imputation was
the second most accurate supertree method.

Our results also show that SuperFine+MRP pro-
duced trees that were close in topological accuracy
to combined analyses using ML. For the 500- and
1000-taxon data sets at 20% and 50% scaffold density,
SuperFine+MRP’s FP rates were statistically indistin-
guishable from those of the combined analyses, and
for the same data set sizes, SuperFine+MRP’s FN rates
nearly matched those of the combined analyses.

As expected, the scaffold density had a large impact
on the topological accuracy of the methods, with the
most accurate results achieved on data sets with dense
scaffolds. However, as scaffold density decreased, Su-
perFine+MRP’s accuracy degraded at a much slower
rate than the other supertree methods.

With respect to running time, SuperFine+MRP was
always as fast or faster than other supertree methods,
and it was consistently faster than the combined analy-
ses even when the time to generate the source trees was
taken into account (Fig. 5 gives results for 1000 taxon
data sets, and online Appendix 3 provides running time
information on the 100- and 500-taxon data sets). For the
1000-taxon simulated data sets, SuperFine+MRP typi-
cally ran in less than 3 h, whereas CA-ML often required
more than a day to complete.

Distance to source trees and running time on biological
data.—We examine SuperFine+MRP in comparison with
MRP, RFS, MinFlip, Q-imputation, SFIT, and PhySIC
(the performance of SuperFine+QMC is examined later).
We report SumFN topological distances in Table 1,
with SumFP and SumRF results reported in online
Appendix 3.
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FIGURE 5. Comparison of MinFlip, RFS, MRP, SuperFine+MRP, and CA-ML on simulated 1000-taxon data sets. Topological accuracy is
given by (a) normalized FN and (b) FP rates. Running time (c) is given in hours on a logarithmic scale; for the supertree methods, running
time shown includes the time needed to calculate ML source trees using RAXML. Each point shows the average of 10 data sets and a standard

error bar.
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TABLE 1. Comparison of supertree methods on biological data sets with respect to SumFN and CPU time in hours (in parentheses)

THPL Seabirds Placental mammals CPL Marsupials
SuperFine+MRP 15 (0.011) 13 (0.001) 36 (0.157) 33 (0.537) 26 (0.053)
SuperFine+QMC 17 (0.023) 13 (0.001) 38 (0.101) F F
RFS 19 (0.609) 12 (0.003) 36 (0.362) 31 (123.082) 26 (0.866)
MRP 20 (0.512) 15 (0.003) 36 (0.058) 33 (13.944) 26 (0.078)
MinFlip 34 (1.093) 19 (0.003) 40 (0.121) 38 (302.269) 34 (0.335)
Q-imputation 29 (90.803) 14 (1.615) F F F
SFIT F 62 (1.053) 48 (108.686) F 76 (111.879)
PhySIC 100 (0.152) 100 (0.001) 100 (0.001) F 100 (0.007)

Notes: SumFN is the sum of normalized FN error rates to source trees, given as a percentage; the best scores (within 2%) for each data set are
given in bold. F indicates the method failed to complete within 2 weeks. THPL refers to the temperate herbaceous papilionoid legumes data set,

and CPL refers to the comprehensive papilionoid legumes data set.

SuperFine+MRP, MRP, and RFS tended to produce
supertrees with smaller topological distances (both
SumFN and SumRF) to the source trees than these
other supertree methods. MinFlip and Q-imputation
were slightly worse than these three, and PhySIC and
SFIT were much worse. Because the methods that had
poor topological accuracy on the simulated data also
had substantially larger SumFNs than the methods that
had good topological accuracy on the simulated data,
it is likely that the methods that had worse SumFN
and SumRF scores are simply less accurate supertree
methods and did not produce reasonably accurate
supertrees.

Comparisons between methods with relatively close
topological distances to the source trees are difficult,
since topological distance to source trees is only weakly
correlated with topological error. Therefore, it is diffi-
cult to compare SuperFine+MRP, RFS, and MRP on the
biological data sets. However, on the THPL data set, be-
cause of the large difference in the SumFN topological
distance to source trees, it seems likely that MRP was
less accurate than SuperFine+MRP and RFS.

The supertree methods fell into three groups with re-
spect to running time (Table 1). SFIT and Q-Imputation
were the slowest, failing to complete on several data
sets, and taking the longest for those data sets for
which they did complete. The fastest methods were
SuperFine+MRP, MRP, and PhySIC, which completed
substantially faster than the remaining methods, RFS
and MinFlip. A comparison between the running times
of SuperFine+MRP, MRP, and PhySIC shows that all
completed quickly (in under an hour) on the relatively

easy to analyze data sets, but that their running times
were highly distinguished on CPL, the data set that
presented the largest computational challenge to the
supertree methods. For this data set, SuperFine+MRP
finished in a little more than half an hour, while MRP
took almost 14 hours, and PhySIC failed to complete.
Thus, with respect to running time, SuperFine+MRP
was the fastest method on the data sets we analyzed.

MRP scores on biological data.—We examined the MRP
scores produced by SuperFine+MRP and MRP on these
empirical data sets (Table 2).

On two of the data sets, SuperFine+MRP produced
better MRP scores, on two SuperFine+MRP matched
the MRP score, and on one data set, SuperFine+MRP
produced a worse MRP score. Because SuperFine+MRP
frequently produced trees that had better scores than
MREP, this suggests that the MRP heuristic we used (the
parsimony ratchet in PAUP*) does not work well with
large MRP inputs (partial binary matrices containing
many “?”s). It seems possible that better solutions to
MRP might be obtained by using other MP software,
such as TNT (Goloboff et al. 2008). However, the better
topological accuracy that we obtain is also potentially
the result of restricting the search for MRP solutions to
only those trees that refine the tree produced in the first
step of the SuperFine method.

Performance of SuperFine+QMC

We now explore SuperFine+QMC and compare its
performance with QMC and other supertree methods

TABLE 2. Comparison of supertree methods on biological data sets with respect to MRP scores

THPL Seabirds Placental mammals CPL Marsupials

SuperFine+MRP 858 206 8809 54388 2112
SuperFine+QMC 918 209 8893 F F

RFS 1112 208 8855 6568 2140
MRP 902 211 8809 5483 2112
MinFlip 1064 218 9232 6056 2284
Q-imputation 1051 212 F F F

SFIT F 481 10160 F 4822
PhySIC 5191 961 25,790 F 7537

Notes: For methods that return more than one tree, the best MRP score produced by any tree is shown. Best scores for each data set are given in

bold. F indicates the method failed to complete within 2 weeks.
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we explored. We use the same simulated and empirical
data sets here as in our evaluation of SuperFine+MRP.

Topological error and running time on simulated data sets.—
Figure 6 presents the results of a comparison of QMC
with SuperFine+QMC and with SuperFine+MRP with
respect to missing branch (FN) error rate on the simulated
data sets; on these data sets, QMC fails to analyze the
500 and 1000-taxon data sets, whereas SuperFine+QMC
and SuperFine+MRP succeed in analyzing all these data
sets. Thus, SuperFine+QMC is able to analyze much
larger data sets than QMC.

A comparison of QMC with SuperFine+QMC on the
100-taxon data sets on which both methods could be run
showed that SuperFine+QMC produced more accurate
trees than QMC on all but the 100% scaffold density data
sets where both methods performed equally well. Su-
perFine+QMC was also faster than QMC (Fig. 7). Thus,
SuperFine+QMC yields dramatic advantages over QMC
with respect to topological accuracy, running time, and
scalability. Furthermore, SuperFine+QMC produced su-
pertrees of almost exactly the same topological accuracy
as those produced by SuperFine+MRP, and in about the
same amount of time, and thus (like SuperFine+MRP)
outperforms the other supertree methods with respect
to topological accuracy.

Distance to source trees and running time on biological data
sets.—SuperFine+QMC failed to analyze some of the
biological data sets (Marsupials and CPL) because of
the polytomy degrees in the SCM trees for these data
sets. The Marsupials SCM tree has a polytomy of degree
200, and the CPL data set has a polytomy of degree
532. However, SuperFine+QMC succeeded in analyzing
the THPL and placental mammals data sets, which also
had large polytomies (degree 95 and 115, respectively).
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Thus, SuperFine+QMC was able to analyze some large
biological data sets, but not all, and the limitation is
the maximum degree of the SCM tree. On the three bi-
ological data sets for which SuperFine+QMC was able
to run, it produced trees that were on average as close
to the source trees as SuperFine+MRP, using all three
criteria (SumFN, SumRF, and SumFP, see Table 1 and
online Appendix 3). Also, although SuperFine+QMC
did not complete on all the biological data sets, when
it did finish an analysis, it completed in minutes. Thus,
SuperFine+QMC was as fast as SuperFine+MRP, and
used less time than the other supertree methods on
these data sets.

Finally, trees computed by SuperFine+MRP and Su-
perFine+QMC had very close total topological dis-
tances to source trees on the data sets on which both
methods succeeded in running. Thus, on those data
sets that SuperFine+QMC was able to analyze, the re-
sults it obtained were close to those obtained by Su-
perFine+MRP, and hence generally superior to those
obtained by other supertree methods. However, Su-
perFine+QMC is unable to analyze some data sets, for
which the SCM tree produces large degree polytomies.
Therefore, SuperFine+QMC is a distinct improvement
on QMC (its base method) and many other supertree
methods, but cannot analyze the full range of data sets
that SuperFine+MRP or MRP can.

DISCUSSION

The experiments using simulated data reported here
indicate that SuperFine+MRP and SuperFine+QMC
are more accurate than current supertree methods,
and in particular more accurate than their respective
base methods. Thus, SuperFine is a boosting tech-
nique for supertree methods, and provides substantial
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FIGURE 6. FN rate (mean with standard error bars) for QMC and SuperFine+QMC supertree reconstructions on simulated data sets with (a)
100, (b) 500, and (c) 1000 taxa, as a function of the scaffold factor. QMC fails to run on the 500- and 1000-taxon data sets.
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FIGURE 7. Running time (mean with standard error bars) for QMC and SuperFine+QMC supertree reconstructions on simulated data sets
with (a) 100, (b) 500, and (c) 1000 taxa, as a function of the scaffold factor. QMC fails to run on the 500- and 1000-taxon data sets.

improvement for the base methods with respect to topo-
logical accuracy while also increasing the size of data
sets that can be analyzed. Although SuperFine+MRP
and SuperFine+QMC have very close performance (in
terms of topological accuracy on simulated data and
total topological distance to source trees for the biolog-
ical data), SuperFine+MRP is generally more robust: it
can analyze larger data sets than SuperFine+QMC, and
does so quite efficiently. Thus, the major contribution
of this paper, in terms of a single supertree method, is
SuperFine+MRP.

On simulated data, Superfine+MRP comes close to
the topological accuracy of combined analysis when the
supertree has larger numbers of taxa and the scaffold
densities are sparse. This is a condition that is likely
fairly realistic for large supertree studies since biologists
usually do not sample thoroughly when producing
scaffold trees that determine the relationships among
higher level taxonomic groups. Thus, we conjecture that
under realistic conditions, SuperFine+MRP will have
an advantage over other supertree methods. Further-
more, given SuperFine+MRP’s increasing running time
advantage as the number of taxa increases, it is likely to
be the preferred method for trees having over 500 taxa.

For the biological data sets, our results show that
SuperFine+MRP produces trees that are as close to
the source trees as current methods that have been
shown to previously be the most accurate, for example,
MRP. Furthermore, SuperFine+MRP has a computa-
tional advantage over the other competitive supertree
methods in that it can analyze large data sets reason-
ably efficiently. However, the relative accuracy be-
tween methods is more difficult to assess, due to the
lack of an optimality criterion that has been demon-
strated to reliably correlate with supertree topological
accuracy.

The speed of SuperFine+MRP results from two fea-
tures. First, the SCM technique is very fast, so that the
first stage completes quickly. Second, polytomies are
refined quickly because the re-encoding of the source
trees as smaller trees (each with no more leaves than
the degree of the polytomy) reduces the resolution of
each polytomy to very small supertree problems. In ad-
dition, the parsimony ratchet implementation we used
for MRP on the re-encoded source trees runs quickly,
except for very large polytomies. In fact, even these su-
pertree problems are less computationally intensive to
compute than the MRP analysis of the original collec-
tion of source trees (unless the SCM tree is completely
unresolved).

Thus, SuperFine+MRP improves on prior supertree
methods, yielding more accurate trees under many re-
alistic conditions and doing so quite efficiently. It is also
the first supertree method to nearly match the accuracy
of ML analyses of supermatrices. The speed and accu-
racy of SuperFine+MRP makes it a useful tool for large-
scale phylogeny estimation, enabling significantly more
accurate phylogenetic analyses of large multimarker
data sets with high rates of missing data.

However, the improvement provided by SuperFine-
boosting depends upon the resolution of the SCM tree.
In particular, since it is possible for an SCM tree to be
completely unresolved, SuperFine+MRP inherits all the
negative properties that MRP has, including statistical
inconsistency and the ability to have relationships that
violate all the source trees. Similarly, SuperFine+QMC
will also inherit all the negative properties for QMC.
On the other hand, because these methods must refine
the SCM tree, this reduces the opportunity to have con-
tradictory splits, and it also ensures that some splits
show up in the final supertree. Thus, even though Super
Fine-boosted supertree methods cannot be guaranteed

20z Idy 61 uo 3senb Aq G1/GH91/712/2/19/aI0He/0IgsAS /W00 dNo"olWepeDE//:SdRY WOy PSPEojuMOQ



2012

SWENSON ET AL.— SUPERFINE: FAST AND ACCURATE SUPERTREE ESTIMATION 225

to have good theoretical performance, it is not unsur-
prising to see the improved topological accuracy that
results.

The impressive performance we observed for Su-
perFine thus depends (at least in part) on the ability of
the SCM method to return a reasonably resolved initial
estimate of the true tree that has a low FP rate. How-
ever, if many estimated gene trees are used, and if these
do not have reasonably high accuracy, then the SCM
tree itself may fail to be well resolved (and could even
be a star). In this case, SuperFine boosting will fail to
provide any advantage over the base supertree method.
One obvious way to address this issue is to modify Su-
perFine so that the first step (producing the initial tree) is
achieved using some technique other than SCM, which
can retain features that are relatively common in the
input set of source trees, even if not universally shared.

Finally, we note that although SuperFine-boosted
methods have excellent accuracy and are quite fast, they
are not the fastest of the existing supertree methods. The
choice between different methods will thus need to take
into account the relative importance between speed and
accuracy. For those cases where accuracy is important,
SuperFine provides a very substantial improvement
over other methods, for many realistic conditions.

SUPPLEMENTARY MATERIAL

Supplementary Appendices can be found at
http:/ /www.sysbio.oxfordjournals.org/ and SuperFine
source code is available through Dryad at (DOI:10.5061/
dryad.879st).
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APPENDIX
Detailed description of the SCM

The SuperFine algorithm proceeds in two stages: (1)
compute a supertree from source trees, using the SCM

(Huson, Nettles, et al. 1999; Roshan et al. 2004b; Roshan
et al. 2004a), and (2) refine each polytomy in the SCM
supertree, where a polytomy is a node of degree greater
than three. Resolving a single polytomy involves re-
encoding each source tree, and then applying the base
supertree method to that set of re-encoded source trees,
and finally adding edges to refine the polytomy based
on the supertree that has been computed. The default
base supertree method is MRP (Baum 1992; Ragan 1992;
Baum and Ragan 2004), but other methods can be used.

The SCM is the foundation of the SuperFine method,
and of interest in its own right. Because we prove theo-
rems about the SCM, although the method has already
been published (Huson, Nettles, et al. 1999; Huson,
Vawter, et al. 1999; Roshan et al. 2004b), we describe
how the SCM is computed in some detail.

Stage 1: the strict consensus merger.—SCM constructs a
supertree from a set of source trees by merging pairs
of trees until only a single tree remains. The merger of
two trees begins with the strict consensus (Day 1985) of
the induced subtrees of the two trees on the intersection
of their taxon sets. The remaining taxa in the union of
the two taxon sets are added to this consensus tree in
such a way that they do not contradict any relationships
in either of the trees. We define this process formally
below.

First:

e Let L(T) denote the taxon set of a phylogenetic tree
T.

Let T|x denote the induced subtree of T on the
taxon-set X.

Let E(T) denote the edge set of the tree T.

Let X(T) denote the set of bipartitions induced by
the internal edges of T.

We say that T refines T’, denoted T" < T, if Z(T") C
(7).

Let Y be a proper subset of L(T) and let e be an
edge in E(T|y). Thus, e defines a bipartition A|B
of Y. Since Y is a proper subset of L(T), there is
at least one and possibly several edges in T defin-
ing bipartitions A’|B’ that “extend” the biparition
A|B, meaning A C A’ and B C B'. It is easy to
see that the set of all such edges in T whose bi-
partitions extend A|B forms a path in T; this is the
“path corresponding to ¢”. Thus, e corresponds
to a path p = (v1,...,7v) in T such that for every
i € {1,...,1 — 1}, the bipartition A’|B’ on L(T)
induced by the edge (v;,vi.1) satisfies A C A’
and B C B'.

The SCM tree T of two trees T; and T», such that
IL(T1) N L(T,)| > 3, is defined formally as follows (de-
picted in Fig. 2).

Let X =L(T1) NL(T>), and let T} and T} be maximally
refined trees such that T} < Ty, Tj < T5, and T}|x = T5|x.
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Let T" = T}|x = T5|x. (Note that T" is the strict consensus
tree of Ty |x and T»|x.)

Then, suppose edge ¢ € E(T') corresponds to a path
of length greater than one in both T; and Tj. For each
i € {1,2}, we modify the trees T/ as follows. Letey, ..., ¢
be the path in Tj, that corresponds to e in T. Collapse all
edges ¢; in this path such that 1 < j < I. Rename the com-
mon vertex of e; and ¢ by v,. (Note that both trees now
have a vertex with the same name, v,.) After performing
this process for each edge of T/, merge the resulting (po-
tentially collapsed) trees T} and T7 into a single tree T by
modifying T’ using the following process. For each edge
e € E(T") that corresponds to a path of length greater
than one in both T} and T} (i.e. an edge now correspond-
ing to a path of length two in T{ and T7), subdivide e
with a vertex v,. Attach to v, that vertex any subtree of
T{ or TY that is not in T and is rooted at v, in either T}
or T;. Now for any edge in e € E(T’) that corresponds
to a path p of length greater than one either in T} or in
T}, subdivide e with as many vertices as there are inter-
nal vertices on that corresponding path. For each inter-
nal vertex v of p, attach the subtree rooted at that ver-
tex in T? to the corresponding newly constructed vertex
subdividing e. Notice that by construction, T|;(r,), and
T|r(r,) are simply contractions of T; and T, respectively;
therefore T|L(T1) < Tl, and T|L(T2) < TQ.

We use the term “SCM supertree” to refer to the re-
sult of consecutive strict consensus mergers of pairs of
trees from a set of trees, such that each pair of trees be-
ing merged have at least three taxa in common.

THEORETICAL RESULTS

The main result of the section is Theorem 1.4, that
the relabeling of source trees with labels drawn from
1,2,...,d, where d is the degree of a polytomy, pro-
duces at most one taxon of each label. However, we
also prove that the SCM tree has the noncontradiction
property of Ranwez et al. (2007), in Theorem 1.1 with
respect to splits.

Theorem 1.1 Let T be a collection of trees and let T be a
SCM supertree of T. Then for every t € T, Z(T|r)) € Z(t).
Hence, the SCM supertree has the “noncontradiction prop-
erty” of Ranwez et al. (2007).

Proof. We prove this by induction on the cardinality of
T. By construction, the result holds for | 7| = 2. Assume
|T| = k, and that the result holds for sets of k — 1 trees.
Let t be a member of T, and consider the last two trees Ty
and T, to be merged to create the final tree T. Then one of
the following must be true: t=Tj, t=T>, or either T; or T,
is the strict consensus merger of some set of trees 7' that
includes . Our base case shows that Z(T|y(r,)) € Z(T1),
and X(T|yr,)) € Z(T2). Thus, if t = Ty or t = Ty, then
I(T|rs) € Z(t). Now suppose, without loss of general-
ity, that Ty is the strict consensus merger of a set of trees
T such thatt € 7'. Then |T’| < k and by the induction
hypothesis Z(T1[.()) € Z(t), and the result follows. [

The following corollary of Theorem 1.1 is immediate.

Corollary 1.2 Let T be a collection of trees, let T be a SCM
supertree of T, and let v be a vertex of T. Let u be a vertex
adjacent to v, and let T' be the connected component of T —
{u, v} (the tree obtained by deleting the edge {u,v} from T,
but not the endpoints) that contains u. Then, for any t € T,
one of the following three conditions holds: L(t) C L(T'),
L(t) NL(T") =0, or L(t) N L(T")|L(t) — L(T") € Z(t).

Proof. Let T be a collection of trees, T a SCM supertree
of T, vavertex of T, u a vertex adjacent to v, and T’ the
connected component of T — {u, v} that contains u. Thus
L(T") C L(T). Now consider t € T. Suppose that ¢ fails to
satisfy the first two of the three conditions above: thus,
L(t) € L(T') and L(t) N L(T") #0. Then L(t) N L(T") and
L(t) — L(T") are both nonempty. By the definition of T”,
L(t) N L(T")|L(t) — L(T") is a split of T (the subtree
of T induced by L(t)). Therefore, by Theorem 1.1, L(t) N
L(T")|L(t) — L(T") € Z(¢). O

As we show in the main text, this corollary is used

in the refinement stage of the SuperFine algorithm. The
following lemma is an immediate result of Corollary 1.2.

Lemma 1.3 Let 7, T, v, and ¢ be as in the description of the
refinement stage of the SuperFine algorithm. Then for any i €
{1,...,d} and t € T, one of the following conditions holds:
L(t) € &~1(0), L nb~1(0) = O, or L(E) N &~ (D)IL(E) —
b1(0) € Z(8).

Proof. Let T, T, v, and ¢ be as defined in the de-
scription of the refinement stage of the SuperFine

algorithm. Additionally, let vy,...,v; and Ti,...,T;
be as defined in the same description. Consider i €
{1,...,d} and t € T. Then ¢~'(i) = L(T;), and the re-
sult follows directly from Corollary 1.2 with u = v; and
T =T, O

The following result follows easily:

Theorem 1.4 Source trees relabeled and collapsed using the
process described in step 2) of the refinement stage of the Su-
perFine algorithm have at most one taxon with each label.

Proof. Againlet7,T, v, T1,..., T4, and ¢ be as defined in
the description of the refinement stage of the SuperFine
algorithm. Consider i € {1,...,d} and t € 7. Then by

Lemma 1.3, we are in one of three cases: L(t) C ¢~'(i),

L(t) N o~ 1(i) =0, or L(t) N o~ ()|L(E) — o~ 1(i) € Z(t).

Case 1: (L(t) € ¢~'(i)): All leaves of t are labeled i
and thus collapse to a single leaf.

Case 2: (L(t) N ¢~1(i) = 0): No leaves of t are labeled
i

Case 3: (L(H)NGL(1)|L(t)—d (i) € £(t)): In this case
the collapsing process replaces the subtree T;
with a single leaf labeled i.

Thus, the result holds. O

¥202 I4dy 61 U0 1senb Aq G| /G¥9L /v L 2/2/19/e101e/0IgsAs/woo dnoolwapede//:sdiy woly papeojumo(



