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Abstract.—We present an evolutionary placement algorithm (EPA) and a Web server for the rapid assignment of sequence
fragments (short reads) to edges of a given phylogenetic tree under the maximum-likelihood model. The accuracy of the
algorithm is evaluated on several real-world data sets and compared with placement by pair-wise sequence comparison,
using edit distances and BLAST. We introduce a slow and accurate as well as a fast and less accurate placement algorithm.
For the slow algorithm, we develop additional heuristic techniques that yield almost the same run times as the fast version
with only a small loss of accuracy. When those additional heuristics are employed, the run time of the more accurate
algorithm is comparable with that of a simple BLAST search for data sets with a high number of short query sequences.
Moreover, the accuracy of the EPA is significantly higher, in particular when the sample of taxa in the reference topology is
sparse or inadequate. Our algorithm, which has been integrated into RAxML, therefore provides an equally fast but more
accurate alternative to BLAST for tree-based inference of the evolutionary origin and composition of short sequence reads.
We are also actively developing a Web server that offers a freely available service for computing read placements on trees
using the EPA. [Maximum likelihood; metagenomics; phylogenetic placement; RAxML; short sequence reads.]

Identification of organisms from, for example, mi-
crobial communities increasingly relies on analysis of
DNA extracted from soil or water samples containing
many, often unknown, organisms rather than from the
individual organisms. Recently, the advent of new DNA
sequencing techniques (e.g., pyrosequencing; Ronaghi
2001) has increased the amount of sequence data avail-
able for identification and analysis of microbial com-
munities by several orders of magnitude. This rapid
increase in the amount of sequence data available poses
new challenges for short-read sequence identification
tools. We can no longer expect that the steady increase
in computing power, according to Moore’s law, is fast
enough to handle this flood of sequence data.

Depending on the DNA sequencing method used, a
single sequencing run can already generate more than
100,000 short-read sequences, which comprise sequence
fragments with a length of ∼30–450 nucleotides (base
pairs). Such sequencing runs can be carried out within
about an hour. Besides rapid full-genome assembly, an-
other important application is the sampling of microbial
communities from, for example, permafrost-affected
soils (Ganzert et al. 2007), vertebrate guts (Ley et al.
2005, 2008; Turnbaugh et al. 2008), hypersaline mats
(Ley et al. 2006), or on hands of humans (Fierer et al.
2008).

Given the large amount of short-read sequences that
metagenomic studies of microbial communities often
yield and the fact that the provenance of these often is
unknown, the first step in studies of metagenomic data
is to identify the biological origin of these reads. This
assignment of short reads to known organisms then al-
lows us to examine and compare microbial samples and
communities (see Turnbaugh et al. 2008). For instance,

20% of the reads in one sample might be most closely re-
lated to a specific taxonomic group of bacteria, whereas
in a different sample, only 5% may be associated with
this group.

Here, we present a novel algorithm, the evolution-
ary placement algorithm (EPA), for rapid phylogenetic
identification of anonymous query sequences (QSs), us-
ing a set of full-length reference sequences (RSs). The
most straightforward approach to identify the origin of
a QS is to use tools that are based on sequence simi-
larity (e.g., BLAST; Altschul et al. 1997). However, the
BLAST-based approach has an important limitation: It
can yield misleading assignments of QS to RS if the sam-
ple of RS does not contain sequences that are sufficiently
closely related to the QS (i.e., if the taxon sampling is
sparse or inappropriate). Any approach based on pair-
wise sequence similarity, like BLAST, will not unravel,
but silently ignore, potential problems in the taxon sam-
pling of the RS. For instance, given two RS a and b, a QS
q may be identified by BLAST as being most closely re-
lated to a. In reality, q might be most closely related to
a RS c, which is not included in the set of RS. Because
this is a known problem (Koski and Golding 2001), re-
cent studies of microbial communities have begun to
employ phylogenetic methods for QS identification (von
Mering et al. 2007), despite the significantly higher com-
putational cost. This treatment of short sequence reads
is related to phylogenetic tree reconstruction methods
that employ stepwise addition of sequences (Kluge and
Farris 1969), with the difference that each QS is individ-
ually placed in the phylogenetic reference tree (RT). If
a QS connects to an internal edge of a RT comprising
the RS (i.e., it is not located near a leaf of the tree), then
this indicates that the sampling of the RS is insufficient
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to identify and characterize the diversity of the QS. This
can be used as a means to identify parts of the tree in
which taxon sampling is sparse and to guide sequenc-
ing efforts to improve the sampling.

To date, phylogeny-based identification of the prove-
nance of anonymous reads is conducted as follows: The
QSs are aligned with respect to a reference alignment
(RA) for the RS and then inserted into the RT either via
a complete de novo tree reconstruction, a constrained
tree search, using the RT as a constraint or backbone, or
a fast and/or approximate QS addition algorithm, such
as ARB (Ludwig et al. 2004), which uses maximum par-
simony (MP). For DNA barcoding, phylogeny-based
Bayesian analysis methods have recently been pro-
posed by Munch et al. (2008) as well as Nielsen and
Matz (2006); these, however, are applied to trees with
significantly less taxa. Recently, Brady and Salzberg
(2009) proposed the Phymm and PhymmBL algorithms
for metagenomic phylogenetic classification and re-
port an improved classification accuracy for simulated
QS compared with BLAST for PhymmBL. Classifica-
tion by Phymm is based on oligonucleotide composi-
tion, whereas PhymmBL uses a weighted combination
of scores from Phymm and BLAST. These algorithms
classify QS relative to a given database of unaligned
bacterial genomes (the National Center for Biotechnol-
ogy Information [NCBI] RefSeq database; Pruitt et al.
2007) and their phylogenetic labels as provided in the
RefSeq database (i.e., from Phylum level down to Genus
level). This is different to the EPA, which can be used
with any set of aligned RS and places QS into a fully
resolved bifurcating RT. Because of the different focus
of Phymm and the EPA, it is currently impossible to
directly compare their accuracy on the same data sets
(e.g., multiple sequence alignments and fully resolved
phylogenies are not provided by the NCBI RefSeq
database). This also hinders direct comparison with
other previous phylogenetic classification methods like
PhyloPythia (McHardy et al. 2007), which is the only
phylogenetic classifier that has been compared with
Phymm (Brady and Salzberg 2009 show that Phymm
and BLAST substantially outperform PhyloPythia) and
MEGAN (Hudson et al. 2007). However, it is possible
to compare the relative performance of the different
methods (Phymm, PhymmBL, and EPA) with place-
ments/classifications obtained by using BLAST on data
sets that are suitable for the respective methods. There-
fore, we mainly compare the accuracy of the EPA with
basic BLAST searches and discuss the analogous accu-
racy evaluation performed for Phymm/PhymmBL.

A very similar algorithm to the EPA, called pplacer,
has been developed independently by Matsen et al.
(2010). The execution times of pplacer are compara-
ble with those of the EPA according to a joint perfor-
mance study conducted by F. Matsen, A. Stamatakis,
and S.A. Berger. A comparative study is included in
Matsen et al. (2010).

The current standard approach for analysis of envi-
ronmental reads yields a fully resolved bifurcating tree
that often comprises more than 10,000 sequences (Fierer

et al. 2008; Turnbaugh et al. 2008). The alignments used
to reconstruct these trees mostly comprise only a single
gene, typically 16S or 18S rRNA. The reconstruction of
such large trees with thousands of taxa, based on data
from a single gene, is time consuming and hard because
of the weak historical signal in the alignment, which
results in a decreased reconstruction accuracy for trees
with many but relatively short sequences (see Bininda-
Emonds et al. 2000; Moret et al. 2002). Moreover, in
metagenomic data sets, a large number of QS will only
have a length of ∼200–450 bp if a 454 sequencer is used.
Thus, for identification of the provenance of short read
QS, the lack of historical signal becomes even more
prevalent and critical if a comprehensive tree is recon-
structed. In order to solve the problems associated with
the lack of signal and to significantly accelerate the
analysis, we advocate a different approach that only
computes the optimal insertion position for every QS
in the RT with respect to its maximum-likelihood (ML)
score.

We introduce a new algorithm for the phylogenetic
placement of QS and thoroughly test the placement ac-
curacy on 8 published data sets. We assess the impact of
QS length on placement accuracy and conduct tests on
short reads derived from original full-length sequences
of the test data sets. Because phylogenetic placement is
inherently more computationally intensive than BLAST-
based placement, performance optimization is an im-
portant factor in the development of such an algorithm
if it is to become a useful and fast alternative to BLAST.
Therefore, we have devised several EPAs and heuristics
with varying degrees of computational complexity.

The algorithm, which has been developed and tested
in cooperation with microbial biologists, is already
available in the latest open source code release of
RAxML (Stamatakis 2006b; version 7.2.7, released in
August 2010, http://wwwkramer.in.tum.de/exelixis/
software.html). The alpha version of the respective Web
service is available at http://i12k-exelixis3.informatik.
tu-muenchen.de/raxml. Our new approach represents
a useful scalable and fast tool for evolutionarily sound
identification of the provenance of environmental QS.
The EPA and pplacer are currently the only algorithms
that can perform the task described here. The paral-
lelization of the EPA (Stamatakis et al. 2010) and the
ability to conduct placements under all time-reversible
substitution models and data types offered by RAxML
is a unique feature of the EPA that helps it to scale
well on large and diverse data sets. Pplacer can infer
placements using either ML (like the EPA) or Bayesian
posterior probabilities.

EVOLUTIONARY PLACEMENT ALGORITHM

The input for our EPA consists of a RT comprising
the r RS and a large comprehensive alignment that
contains the r RS and the q QS. The task of align-
ing several QS with respect to a given RS alignment
can be accomplished with ARB (Ludwig et al. 2004),
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NAST (DeSantis et al. 2006), MUSCLE (Edgar 2004), and
MAFFT (Katoh et al. 2005), or, as tested here, with HM-
MER (Eddy 1998). One key assumption is that the RT is
biologically well established or that it has been obtained
via a preceding thorough phylogenetic analysis. In a
typical usage scenario, the EPA could be used for map-
ping distinct microbial samples, for instance, from time-
series experiments or different locations/individuals, to
the same, for example, microbial RT in order to compare
communities. Because the same RT can be used in mul-
tiple placement runs, the inference of the RT is not part
of the EPA.

Initially, the algorithm will read the RT and RA and
mark all sequences not contained in the RT as QS. There-
after, the ML model parameters and edge lengths on the
RT will be optimized using the standard procedures im-
plemented in RAxML (a description of the ML model
can be found in the Supplementary Material [available
from http://www.sysbio.oxfordjournals.org/]).

Once the model parameters and edge lengths have
been optimized on the RT, the actual identification al-
gorithm is invoked. It will visit the 2r − 3 edges of the
RT by a preorder tree traversal, starting at an arbitrary
edge of the tree leading to a tip (i.e., visit the current
edge first and then recursively visit the two unvisited
neighboring edges). At each edge, initially, the proba-
bility vectors of the RT to the left and the right will be
recomputed (if they are not already oriented toward the
current edge). Thereafter, the program will successively
insert, and subsequently remove, one QS at a time into
the current edge and compute the likelihood (hence-
forth denoted as the insertion score) of the respective
tree containing r + 1 taxa. The insertion score will then
be stored in a q × (2r − 3) table that keeps track of the
insertion scores for all q QS into all 2r − 3 edges of
the RT. In order to more rapidly compute the per-edge
insertions of the QS, we use an approximation that is
comparable with the lazy subtree rearrangement (LSR)
moves that are deployed in the standard RAxML search
algorithm (see Stamatakis et al. 2005). After inserting a
QS into an edge of the RT, we would normally need to
reoptimize all edge lengths of the r + 1 tipped tree in or-
der to obtain the corresponding insertion score. Instead,
we only optimize the three edges adjacent to the inser-
tion node of the QS (see Fig. 1) before computing the
likelihood of the insertion. This approach rests on the
same rationale that was used to justify the LSR moves.
Our experimental results justify this approximation be-
cause it yields a high placement accuracy. We use two
methods, like those used for the LSR moves, to reesti-
mate the three edges adjacent to the insertion edge: A
fast method and a slow method that uses the Newton–
Raphson method. The fast method simply splits the
insertion edge, br, in the RT into two parts, br1 and br2,
by setting br1 = br2 = br/2, and bq = 0.9 (i.e., the edge
leading to QS), where 0.9 is the default RAxML value
to initialize edge lengths. These values were chosen
empirically for good placement accuracy over varying
input data. Note that, we used the slow method, that
is, the most accurate placement method available in

FIGURE 1. Local optimization of edge lengths for the insertion of
a QS into the RT.

RAxML without the above approximations for the
main accuracy evaluation presented here. Thereafter,
we also conducted a separate comparison of the slow
and fast methods. The slow method repeatedly applies
the Newton–Raphson method to all three edges (br1,
br2, and bq) until no further application of the Newton–
Raphson method is needed (i.e., when ε ≤ 0.00001,
where ε is the edge length change between two invoca-
tions of the Newton–Raphson method). Alternatively,
our algorithm can also use MP to prescore and order
promising candidate insertion edges in order to further
accelerate the placement process.

The output of this procedure consists of the RT,
enhanced by assignments of the QS to edges of the
RT. Each QS is attached to the edge that yielded the best
insertion score for the specific QS. Hence, the algorithm
will return a multifurcating tree if two or more QS are
assigned to the same edge. An example is depicted in
Figure 2.

The EPA algorithm can optionally use the nonpara-
metric bootstrap (Felsenstein 1985) to account for uncer-
tainty in the placement of the QS. An example for this
is shown in Fig. 3. Thus, a QS might be placed repeat-
edly onto different edges of the RT with various levels
of support. For the bootstrap procedure, we introduce
additional heuristics to accelerate the insertion process.
During the insertions onto the RT using the original
alignment, we keep track of the insertion scores for all
QS into all edges of the RT. For every QS, we can then
sort the insertion edges by their scores and for each
bootstrap replicate only conduct insertions for a specific

FIGURE 2. Evolutionary identification of three QSs (QS0, QS1,
QS2) using a 4-taxon RT.
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FIGURE 3. Phylogenetic placement of three QSs (QS0, QS1, QS2)
onto a 4-taxon RT with insertion support score.

QS into 10% of the best-scoring insertion edges on the
RT. This reduces the number of insertion scores to be
computed per QS on each bootstrap replicate by 90%
and therefore approximately yields a 10-fold speedup
for the bootstrapping procedure. In a typical applica-
tion scenario, one may determine the diversity of the
environmental sample for every replicate using, for in-
stance, UniFrac (Lozupone and Knight 2005), and then
compute an average diversity over all replicates.

As a faster alternative to the nonparametric bootstrap,
the insertion scores can also be directly used to compute
placement uncertainty. von Mering et al. (2007) used
expected likelihood weights (ELW; Strimmer and Ram-
baut 2002) to assign QS to an area of a tree with a certain
confidence. Methods for calculating a placement uncer-
tainty using ELW are already implemented in the EPA
and pplacer.

In order to improve the runtime of the slow insertion
method, we developed two heuristics that rely on the
fast scoring approach (described above) or MP scores,
respectively. Given those prescoring techniques, the
number of insertion positions considered for the thor-
ough, but slow insertion process, can be reduced to a
fraction of promising candidate edges. The proportion
of insertion edges suggested by the rapid prescoring
heuristics for analysis under the slow insertion method
is determined by a user-defined parameter f h. As part of
our performance evaluation, we tested the ML- and MP-
based heuristics with regard to this parameter setting.

It is a known problem (Jermiin et al. 2004) that com-
positional heterogeneity can bias phylogenetic infer-
ence because it implies that the sequences cannot have
evolved under the same stationary, reversible, and ho-
mogeneous conditions (assumed by all the available
time-reversible substitution models). In the case of the
EPA, this can be problematic for the placement of QS
onto potentially very short edges of the RT. Different
approaches exist to resolve those problems by using
more sophisticated models (e.g., Galtier and Gouy 1998;
Jayaswal et al. 2007). Nonetheless, time reversibility
is required to accommodate the high computational
demands of large-scale tree and EPA inferences, in par-
ticular with respect to computing the likelihood on trees

(the “pulley principle”; Felsenstein 1981). Therefore, we
recommend that users of EPA test their alignment of
RS for evidence that the sequences have not evolved
under time-reversible conditions (e.g., using methods
published by Ababneh et al. 2006 and Ho et al. 2006) be-
fore using the EPA. If the data have not evolved under
time-reversible conditions, then the conclusions drawn
from using the EPA should be given with this caveat in
mind. These considerations do not affect our accuracy
assessment because trees of full-length sequences and
placements have been inferred under the same model
and the potential errors that may occur because of inap-
propriate model selection affect both tree construction
and placement.

EXPERIMENTAL SETUP

Data Sets

To test the accuracy of the EPA and competing ap-
proaches, we used eight RAs of nucleotides or amino
acids from 140 up to 1604 sequences. The experimental
data span a broad range of organisms and include rbcL
genes (D500), small subunit rRNA (D150, D218, D714,
D855, and D1604), fungal DNA (D628), and amino acid
sequences from Papillomaviridae (D140). For each set, we
computed the most likely tree and obtained bootstrap
support (BS; Stamatakis et al. 2008) values for the inter-
nal edges; this ML tree was denoted the RT. The data sets
are available at http://wwwkramer.in.tum.de/exelixis/
epaData.tar.bz2. The selection of the data sets and data
types per se is not important, as long as QS with well-
supported positions can be extracted from them. It
should be noted that the number of data sets that
could be assessed was limited by the excessive com-
putational requirements of the leave-one-out experi-
ments described in the following sections. The question
we intend to answer by these experiments is this: can
the EPA place a QS of reduced length onto approxi-
mately the same position from which the full-length
QS was pruned? We specifically did not include real
metagenomic data sets in our study because the phy-
logenetic positions of the QS are unknown. Moreover,
real metagenomic data sets do not allow for comparing
the placement accuracy, or inferred placement position,
between full-length and short read sequences, whereas
using a full-length sequence alignment and emulating
short reads allows for such a comparison. Therefore, we
emulated metagenomic data sets using real-world align-
ments with ML trees and BS support, which is as close as
one can get to reality for assessing placement accuracy
using real sequence data. To analyze real metagenomic
data, we used the parallel version of the EPA, which
can be applied to very large real metagenomic data sets
(4874 RS and 100,627 QS; Stamatakis et al. 2010).

Generation of QS

To evaluate the accuracy of our algorithm, we pruned
one candidate QS at a time from the existing ML trees
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FIGURE 4. Illustration of the criterion for the QS selection and experimental setup. (a) Candidate QS belongs to subtree of size 2 that is
connected to the tree by a well-supported edge. It has one other tip as direct neighbor. QS with this property will be referred to as outer QS.
(b) Candidate QS is connected to the tree by two well-supported edges. QS with this property will be referred to as inner QS. (c) Experimental
setting: reinsert shortened candidate QS in to pruned RT. We use three different ways of generating QS with desirable features: contiguous
subsequences, paired-end reads, and random gaps.

before reinserting the QS into the tree. We only pruned
and reinserted those QS that were associated with high
BS scores in the RT in order to assess placement accuracy
for taxa whose position in the original tree is reliable. A
candidate QS is considered to have high BS, when the BS
of either one of the two edges to which the taxon is at-
tached is>75% and the other one leads to a neighboring
tip (Fig. 4a), or if both of these edges have a BS > 75%
(Fig. 4b). The 75% threshold reflects the typical empir-
ical cutoff that is widely used in phylogenetics (Hillis
and Bull 1993). For each QS, a reduced RT is derived
by pruning the respective tip from the original tree. The
QS associated with that taxon is then placed onto the re-
duced tree (Fig. 4c) with our EPA algorithm.

In our test data sets, the QSs were always derived
from the full-length sequences in the RA. In a typical
application scenario, however, the placement algorithm
will have to cope with QSs that are significantly shorter
than the full-length sequences in the RA. Hence, we
carry out a systematic assessment of the placement ac-
curacy depending on the length of the QS by artificially
shortening the full-length sequence in question via in-
sertion of gaps. We deployed three distinct methods to
produce a QS that are ordered according to increasing
biological realism.

A first method to produce QS involved randomly
replacing existing characters by gaps. Although this
method arguably does not reflect a real usage sce-
nario, it provides a means to systematically assess the
placement of QS over a wide variation of “virtual read
lengths” while minimizing the influence of the position-
specific placement accuracy variation. Position-specific
effects on placement accuracy have previously been
identified as a problem by Chakravorty et al. (2007).
Multiple placement runs were conducted for QS with
the relative proportion of nongap characters set to 10%,

20%, . . ., 90%, up to the full sequence length. Because
the sequences have been extracted from the original
multiple alignment, the remaining nongap characters
are still aligned to the RA. Because the proportion of
gaps is calculated relative to the length of the RA, the
maximum proportion of available nongap characters is
alignment dependent. We emphasize that, mathemati-
cally, the introduction of random gaps does not influ-
ence the calculation of the likelihood function because
the used models assume independence between sites.
The results from these experiments show the qualitative
relationship between QS length and placement accu-
racy, in a way that is not feasible with the more realistic
QS generation method described below, because of the
high computational requirements of these evaluations.

The second method to artificially shorten candidate
QS involved randomly sampling contiguous subse-
quences from the full-length sequence in question. This
method to produce QS closely reflects the main EPA
application scenario. Typically, a large number of short
sequence reads generated by next generation sequencing
methods from unknown positions will need to be placed
onto a RT. For every full-length sequence in question,
we sampled 20 QS with uniformly distributed posi-
tions and normally distributed lengths (mean length:
200±60 bp for nucleotides; 70±20 for amino acids). This
roughly corresponds to the read lengths generated by
current high throughput sequencing technologies. We
sampled 20 QS per full-length sequence to minimize the
aforementioned influence of position-specific bias on
the placement of QS. Because of the high computational
requirements of placing 20 QS per full-length sequence,
we did not repeat this evaluation for different mean read
lengths. To assess the relationship between read length
and placement accuracy, we conducted the random gap
evaluation. Because a method is needed to align the
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short reads to the RA in a typical analysis using EPA,
we also assessed placement accuracy using realigned
QS and compared it with the QS placement accuracy
induced by using the original alignment. We used
HMMER to realign the QS to a profile hidden Markov
model (HMM) of the RA (sequence-to-profile align-
ments with MUSCLE and MAFFT resulted in a slightly
inferior placement accuracy; data not shown). Because
the realignment procedure is not an integral part of the
EPA, and future developments could potentially im-
prove the realignment quality, we present results for the
EPA with and without HMMER realignment.

A third method to produce QS involved generating
these such that they correspond to paired-end reads
(see Fig. 4c; in this experiment, we excluded data set
D140 because it is a multigene alignment of amino acid
sequences). Thus, in contrast to the previous method,
the position of the extracted subsequences within the
gene remains fixed. This modification reflects another
real-world scenario of the EPA because paired-end
sequencing is a widely used technique. Once again,
we conducted our placement accuracy assessment on
paired-end reads that were artificially generated from
the full-length sequence in question by replacing all
characters in the middle of the sequence by gaps. The
artificial paired-end reads were 2× 50 bp and 2× 100 bp
in length.

Comparison with Placements Based on Pair-Wise
Sequence Similarity

We conducted our evaluation of the accuracy of the
EPA by comparison with a typical application scenario
in which appropriate sequence-based search tools such
as BLAST are used to assign a QS to the most simi-
lar RS. In this setting, a QS will always be assigned
to one of the terminal edges of the RT. As mentioned
above, for the EPA tests, we can choose to reuse the
alignment information from the original multiple se-
quence alignment from which the QS were generated.
With BLAST we do not have this option, so all QS
will effectively be realigned against the RS. For this
reason, we compare BLAST against the EPA with and
without previous QS realignment using HMMER. For
all tests involving BLAST, we removed all gaps from
the multiple alignment and built a BLAST database
for each data set. We also removed all gaps from the
candidate QS and concatenated the two ends of the
artificial paired-end reads into one sequence. Searches
with those sequences were conducted against the cor-
responding BLAST database. The default parameters of
the BLAST program from the NCBI C Toolkit were used
for character match/mismatch (scores 1 and −3) and
gaps (nonaffine gap penalty of −1). The default values
from the NCBI BLAST Web site with affine gap penalties
were also tested but produced slightly worse placement
results and higher run times than the default settings.
Using BLAST has the disadvantage that the informa-
tion stemming from the RA that is present in the QS

cannot be used, so for fairness, the BLAST placements
should be mainly compared with EPA placements with
previous QS realignment. For the tests on random gap
QS, we did not use BLAST for comparison because it
is not well suited for aligning such QS. The gap model
as well as the local alignment algorithm rely on con-
tiguous sequence stretches of certain lengths, which
were not present in the random gap QS. For the random
gap evaluation, we used a custom distance measure to
calculate the pair-wise sequence similarities as an alter-
native to BLAST. It is defined as follows: For the two
aligned sequences in question, we count the number
of positions, where two different nongap characters are
aligned with each other. This measure corresponds to
the Hamming (1950) distance, where a gap is a place-
holder for any character. Placements derived from this
distance measure will be referred to as sequence-based
nearest-neighbor (SEQ-NN) placements.

Accuracy Measures

To quantify placement accuracy, we used two distance
measures based on the topology and edge lengths of the
original ML tree. In all cases, we considered an original
edge and an insertion edge. The original edge is the one
corresponding to the sequence used to generate the QS
and into which it should ideally be reinserted. The inser-
tion edge is computed by the EPA. To quantify the dis-
tance between the original edge and the insertion edge,
we use the following two distance measures: The node
distance (ND) is the unweighted path length in the orig-
inal RT between the two edges. This corresponds to the
number of nodes located on the path that connects the
two edges (Fig. 5a) and represents an absolute distance
measure. The second measure is the sum of edge lengths
on the path connecting the two edges. This measure also
includes 50% of the length of the insertion edge and 50%
of the length of the original edge (Fig. 5a). For compa-
rability between different trees and in order to obtain

FIGURE 5. Illustration of the tree-based distance measures. a) Ex-
ample tree with two edges (original and insertion edge) highlighted.
There are two nodes on the path, so the ND is 2. The edge distance cor-
responds to the length of the connecting path, where of the two end
edges only half of the edge length is used. b) Tree diameter that is used
to normalize the edge distance.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/60/3/291/1667010 by guest on 03 April 2024



2011 BERGER ET AL.—EVOLUTIONARY PLACEMENT OF SHORT SEQUENCE READS 297

a relative measure, we normalize the edge path length
by dividing it by the maximum tree diameter (Fig. 5b).
The maximum diameter is the edge path of maximum
length between two taxa in the RT. This distance mea-
sure is henceforth denoted as normalized edge distance
(NED%).

RESULTS AND DISCUSSION

Placement Accuracy for Random Gap QS

To assess the influence of QS length and at the same
time reduce the impact of positional variability on place-
ment accuracy, we tested the accuracy of the EPA on
random-gap sequences of various lengths. Placements
were carried out on the 8 data sets for varying artificial
read lengths. Figure 6 provides a detailed plot of the ac-
curacy as a function of the proportion of gaps, averaged
over all candidate QS from all data sets (respective plots
for the individual data sets can be found in the Supple-
mentary Material). As a measure of accuracy, we use the
distance between the placement position and the true
position from which the respective QS was originally
pruned. Therefore, a lower distance indicates higher

FIGURE 6. Placement accuracy for QS with artificially introduced
random gaps. a) Average ND and b) NED (between insertion positions
and real positions).

accuracy. For each placement method, we show the
distances for three subsets of candidate QS: the disjunct
sets of outer QS and inner QS (see Fig. 4), as well as the
complete set of QS (all QS).

As expected, the general trend is that placement ac-
curacy increases with the QS lengths. For all three QS
subsets, the EPA achieves higher placement accuracies
than SEQ-NN. Generally, the distances of the EPA place-
ments are at least two times lower than for SEQ-NN. For
SEQ-NN, the placement accuracy is considerably lower
for the inner QS subset compared with the other QS sub-
sets. Placement based on pair-wise sequence similarity
is harder for inner QS than for the outer QS because
the candidate QS do not have direct neighbors in the
RT. This decrease of placement accuracy is independent
of the QS lengths. For the EPA, the accuracy is more
uniform across the three QS subsets. Only for short QS,
there is a slight accuracy decrease for inner QS (this ef-
fect is more pronounced for the NED% measure). With
increasing QS length, the EPA placements become al-
most equally accurate for the three QS subsets. It is
worth noting that, on average, the EPA correctly places
almost all QS from all three subsets, when they contain
<50% gaps. The results suggest that there is a steady
increase in accuracy for increased QS lengths up to the
“perfect” placement on our test sets. This is particularly
promising because read lengths will further increase.

The EPA placements on the inner QS compared with
the outer QS are especially encouraging because this
subset represents a worst-case scenario with respect to
taxon sampling in the RT. In contrast to SEQ-NN, the
original QS position has negligible impact on the place-
ment accuracy. The results on this subset are indicative
for the performance on data sets with a sparse or inad-
equate taxon sampling. Because it is hard to determine
an adequate taxon sampling a priori for an unknown
microbial community, our approach therefore can be
used to appropriately adapt the taxon sampling.

Placement Accuracy for Randomly Selected Subsequences

Table 2 provides the placement accuracy (according to
the ND measure) for the uniformly sampled contiguous
subsequences of normally distributed lengths (mean:
200± 60 bp and 70± 20 amino acid residues). The table
values represent distances between the placement po-
sitions and the true positions from which the QS have
been pruned. An ND of 0 represents a perfect place-
ment, larger values indicate larger placement errors. As
in the previous section, we show separate results for
outer QS, inner QS, and all QS. In the second column,
we show the placement accuracy of the EPA in terms
of ND. For data set D140, this means that, averaged
over all QS, the placements calculated by the EPA are
within 0.51 nodes of the original placements. In the next
column, we provide the average ND of the EPA for the
case when the QS have been realigned to the RA using
HMMER prior to the placement run. For D140, the
average ND is 0.59, so the additional realignment step
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results in EPA placements that are on average 1.16 times
further away from their original position than EPA
placements without QS realignment. The third column
gives the average ND for a BLAST-based approach. For
D140, the value of 0.91 corresponds to placements that
are on average 1.78 and 1.53 times further away from
the true position than the EPA and EPA–RA placements.
A corresponding table using the NED% measure is
provided in the Supplementary Material. In general, the
results are comparable with the ND results.

The values for D140 reflect the general trends that
apply to most of the data sets. The EPA placements are
on average more accurate than the BLAST placements,
by factors between 1.12 and 2.06. Except for the two
smallest (in terms of number of taxa) nucleotide data
sets, the advantage of the EPA over alternative methods
improves for the inner QS. For the smallest data sets,
the number of inner QS (see Table 1, remember that
we only select well-supported leaves as candidate QS)
is very small; thus, this variation may be attributed to
random effects. For the outer QS, the advantage over
BLAST is less pronounced. For two of the larger data
sets (D1604 and D755), the absolute accuracy of the EPA
is approximately equal for outer QS and inner QS, al-
though there is a larger accuracy decrease for BLAST.
The realignment using HMMER (see Table 2 columns
EPA and EPA–RA) before placement by the EPA has
only a small negative impact on placement accuracy.
The realignment step decreases the accuracy of the EPA
with respect to the two distance measures by factor
1.03–1.2. For one data set only (D628), the combination
of EPA and HMMER was found to be slightly less ac-
curate than placement with BLAST. We conclude that
profile-HMMs as implemented in HMMER offer a use-
ful method for the addition of short reads to a RA in this
scenario, although there is still room to improve the QS
alignment on certain data sets.

In Table 3, we show the placement precision of the
EPA and BLAST in terms of percentage of QS placed
within a certain ND of their true position. Up to an
ND threshold of 10, the EPA with HMMER realignment
(column EPA-RA) outperforms BLAST by 2.2–8%. As
before, the EPA without realignment has slightly higher
accuracy compared with EPA–RA. For the inner QS

TABLE 1. Data sets used for evaluation of the EPA

Data Type Length Number of Number of Number of
taxa QS inner QS

D140 AA 1104 140 95 9
D150 N 1269 150 66 10
D218 N 2294 218 80 14
D500 N 1398 500 205 29
D628 N 1228 628 210 20
D714 N 1241 714 293 61
D855 N 1436 855 344 48
D1604 N 1276 1604 541 83

Note: The columns contain (from left to right): the name of the data;
the type of the data (N: nucleotides and AA: amino acids); and the
length of the data (i.e., number of sites in the alignment); for defini-
tions of QS and inner QS, see the main text).

TABLE 2. Accuracy on randomly sampled short subsequences in
terms of ND from the original position

Data EPA EPA-RA BLAST

Outer QS
D140 0.49 0.58 0.82
D150 1.14 1.2 1.96
D218 1.7 2.01 3.66
D500 1.31 1.37 2.36
D628 2.44 2.95 2.69
D714 1.71 1.82 2.36
D855 2.87 2.97 3.53
D1604 2.26 2.45 2.87

Inner QS
D140 0.74 0.71 1.81
D150 3.09 3.1 4.62
D218 2.24 2.66 3.81
D500 2.05 2.37 4.16
D628 3.28 3.65 4.04
D714 1.78 1.93 3.51
D855 3.68 3.74 4.91
D1604 2.23 2.38 3.86

Notes: The second column (EPA) shows the average ND of the EPA
placements (using slow insertions under the GTR + Γ model) for the
data sets in question. The third column (EPA-RA) shows the average
ND for the EPA with previous realignment using HMMER. The last
column (BLAST) shows the average ND for a BLAST-based approach.

subset, the difference between BLAST and EPA–RA is
larger, reaching 19.7% for an ND threshold of 1 (by defi-
nition, BLAST cannot correctly place inner QS, thus ND
will be at least 1). Brady and Salzberg (2009) evaluated
Phymm/PhymmBL in a similar experimental setup,
by measuring the classification accuracy of Phymm,
PhymmBL, and BLAST at different taxonomic levels.
PhymmBL achieved an accuracy improvement of ∼6%
for PhymmBL over BLAST on simulated QS.

As previously noted here, there can be position-
specific effects that can influence the placement accu-
racy depending on which part of the gene is used to
generate QS. To minimize the influence of this position-
specific bias, we sampled multiple QS (at different gene
regions) from every input sequence and report averages
in this study. This broad sample of QS along the gene
can also be used to plot the site-specific mean placement
accuracy over the length of the RA. Accuracy plots for
the data sets in this study are available in the Supple-
mentary Material. This approach can also be used, a

TABLE 3. Percentage of QS placed correctly within a certain ND
(max(ND)) of the original position over all data sets

Max(ND) EPA (%) EPA-RA (%) BLAST (%)

Outer QS
0 58.4 56.4 56.3
1 71.1 69.5 64.1
2 77.6 76.0 69.5
5 87.9 86.8 82.6

10 94.6 93.9 91.9

Inner QS
0 37.0 35.1 0.0
1 64.3 63.4 43.7
2 74.7 73.1 56.9
5 86.5 85.8 77.9

10 94.1 93.6 90.5
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TABLE 4. Accuracy of the placement of 2×100 bp paired-end reads

ND NED%

Data EPA BLAST EPA BLAST

Outer QS
D150 1.14 3.38 0.63 1.76
D218 1.44 4.77 3.6 8.45
D500 0.84 4.88 1.75 7.35
D628 0.56 1.83 0.83 1.83
D714 1.31 3.59 1.77 4.78
D855 2.0 5.98 1.11 3.35
D1604 1.58 3.67 0.79 1.65

Inner QS
D150 1.9 5.3 2.23 5.64
D218 4.43 5.21 8.16 9.38
D500 1.59 9.41 3.15 12.24
D628 0.85 2.95 0.55 1.13
D714 1.66 4.9 2.9 7.76
D855 2.9 7.54 2.04 4.61
D1604 1.57 5.3 1.69 4.84

Notes: The values given are the ND and the normalized edge distance
(NED %). The methods used are the EPA (slow insertions under the
GTR + Γ model) and BLAST-based nearest neighbor.

priori, on a full-length sequence alignment to determine
appropriate gene regions for short-read generation.

Placement Accuracy for Paired-End Reads

Table 4 provides the overall results of the experiments
with virtual paired-end reads of length 2 × 100 bp (the
results for 2 × 50 bp reads are provided in the Sup-
plementary Material). Similar to the previous section,
the placement accuracies are given in terms of ND and
NED%, averaged over all QS. For D150, the EPA places
the QS within 1.26 nodes of their true position, whereas
for BLAST, the average ND of 3.67 corresponds to place-
ments that are 2.91 times further away from the original
position relative to the EPA. The table also contains
corresponding values for the NED% measure, which
indicate similar results as the ND measure. As in the
previous section, the general trend is similar for all data
sets. The accuracy of the EPA placements are on average
1.58–5.87 times better than for BLAST.

Figure 7 provides histograms for the accuracy distri-
bution of individual placements computed by the EPA
and BLAST for 2 × 100 bp paired-end reads on data set
D855. Respective histograms for all data sets on 2 × 100
bp and 2 × 50 bp reads are available in the Supplemen-
tary Material. The plots suggest that the placement er-
ror for both methods follows an approximate power law
distribution. The placements obtained via the EPA are,
on average, closer to the true position and yield smaller
maximum placement errors than BLAST.

Table 4 highlights that the EPA consistently outper-
forms BLAST-based placements for paired-end reads
and that placements are approximately twice as ac-
curate on average. Generally, the placement accuracy
for paired-end reads of lengths 2 × 100 bp is better
than was expected from the test with randomly se-
lected contiguous subsequences of mean length 200
bp in the previous section. One contributing factor is

FIGURE 7. Histogram showing the placement accuracy, based on
NDs, for the placement of 2 × 100 bp paired-end reads from D855,
using outer a) and inner b) QS.

that many of the subsequences in the previous experi-
ment were significantly shorter than 200 bp because we
use normally distributed lengths. There also appears
to exist a positive effect, generated by selecting sub-
sequences from two distinct regions of the gene (the
start and the end) from the original QS; in combination,
phylogenetic information from both ends, may con-
tain a stronger historical signal than a single, randomly
selected subsequence.

Impact of Placement Algorithms and Substitution
Models on Accuracy

All preceding computational experiments were car-
ried out using the most thorough (slow) version of
the EPA under the generalized time reversible + Γ and
Whelan and Goldman + Γ models. In this mode, the
EPA optimizes edge lengths via the Newton–Raphson
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FIGURE 8. Average ND for different versions of the EPA (fast/slow
insertions) algorithm and model types (GTR + Γ , GTR + CAT) on inner
QS and outer QS from all data sets.

method for every possible insertion edge on the RT. As
previously mentioned, we also devised a fast version
of the EPA where this optimization is deactivated for
QS insertions. These heuristics can speed up the EPA
by one order of magnitude when a large amount of QS
is being placed onto a RT. An additional speedup by a
factor of 3–4 can be achieved by using the GTR + CAT
or PROT + CAT approximations (Stamatakis 2006a) of
rate heterogeneity.

Figure 8 shows the impact of EPA heuristics and rate
heterogeneity models on placement accuracy for all QS
over all data sets (analogous plots for the individual
data sets are available in the Supplementary Material).
For the slow insertion method, there is practically
no difference in placement accuracy between the Γ
model and the CAT approximation. For the fast in-
sertion method, there is a notable decrease in placement
accuracy for the CAT as well as the Γ models. The de-
crease is more pronounced for the outer QS, whereas
for the inner QS, the effect of using the fast insertion
method is less pronounced. As already mentioned, cor-
rect placement of the inner QS is harder than placement
of the outer QS, which have direct neighbors in the
RT. The results of this experiment show that the slow
version of the EPA that includes edge length optimiza-
tion can produce better placement results than the fast
version, especially when QS are placed on inner edges of
the RT.

Heuristics for Slow Insertions

As shown in the previous section, the loss of accu-
racy induced by the fast insertion method is minimal.
Nonetheless, a slight accuracy improvement can be
attained by the slow insertion method, especially re-
garding the more precise edge length estimate at the
insertion position that can be used for postanalysis
purposes. Using the rapid insertion edge prescoring
heuristics already described, it is possible to accelerate
the slow insertion algorithm with little to no impact

FIGURE 9. Accuracy of the EPA as a function of the number of
edges considered for slow insertion after heuristic filtering.

on placement accuracy. Here, we evaluate the accuracy
trade-offs associated with these heuristics. We also pro-
vide run-time measurements for the EPA and BLAST.

In contrast to the previous accuracy assessments, we
do not test the placement of one QS at a time onto an
existing RT from which the QS has been previously
pruned. Instead, we randomly split the alignments into
two subsets that each comprise 50% of the taxa. The
first subset is used to infer a best-known ML tree with
RAxML onto which the remaining taxa (of the second
subset) are placed via the EPA. Here, we assume the
slow EPA placements to be the true placements. In this
experiment, we reduce the length of the QS to 50% non-
gap characters. The nongap characters are a contiguous
sequence fragment that starts at the beginning of the
respective sequence; that is, the QS represent roughly
the first half of the gene.

Figure 9 shows the accuracy on the largest data set
D1604 (placement of 802 QS onto a RT with 802 RS).
The fraction of insertion edges considered for the slow
insertion phase is controlled by the parameter fh. In
the plot the accuracy of the heuristics for values of
fh = 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256 is shown (i.e., on this data set

∼400, 200, 100, 50, 25, 12, 6 out of 1601 possible insertion
edges are considered). For the lowest fh values, there is
a visible decrease in placement accuracy (sharp rise of
the curves on the left side of the plot). For 50 or more
insertion edges, the accuracy remains virtually constant.
The results suggest that, on this data set, it is sufficient
to more thoroughly analyze only 50 out of 1601

(
fh= 1

32

)

candidate insertion edges proposed by the heuristics
to obtain the best possible accuracy (even for fh = 1

64 ,
there is only a very small deviation from the reference
placements). Another important result is that the MP
heuristics produce equally accurate placements as the
ML heuristics, for all, except the smallest values of fh.

We conclude that the MP heuristics with a parame-
ter setting of fh = 1/32 (using the Γ model for thorough
insertions) are sufficient for achieving placement accu-
racy comparable with the reference placement but with
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computational requirements (290 s) that are in the same
order of magnitude as a simple BLAST search (216 s) of
the QS against the sequences in the RS. Realignment of
the QS to the RA takes 224 s using HMMER on this data
set. Thus, the combined run time of HMMER and the
EPA is ∼2.5 times higher than a simple BLAST search
but still within the same order of magnitude.

The lowest run time (113 s) was achieved by using the
CAT model for slow insertions at the expense of a slight
loss in accuracy (i.e., on average, the ND increased by
∼0.1). Based on the results in the previous section, we
expect the accuracy difference between the CAT approx-
imation and the Γ model of rate heterogeneity to be neg-
ligible in a real-world scenario.

The differences in accuracy between the fast and slow
insertion methods as well as between the Γ and CAT
models are generally larger than in the previous sec-
tions. This is not surprising, given that the setup of this
experiment was not designed to measure the insertion
accuracy relative to an assumed correct position, but the
deviation between our best, yet slowest, method and
less accurate accelerated methods. Here, we do not con-
strain the experiment to QS with high support values in
the RT, but chose QS at random, which may introduce a
certain loss of precision to this evaluation. In addition,
the RT (comprising 50% of the taxa in the original RA) is
smaller than in the previous evaluations and thus more
sparsely sampled. Nonetheless, the deviation between
the fast and slow EPA versions amounts to less than half
a node on average and the general finding that slow in-
sertions under CAT are more accurate than fast inser-
tions under Γ is consistent with previous experiments.

EPA WEB SERVICE

An alpha version of a Web server that offers the EPA
algorithm is freely available at http://i12k-exelixis3.
informatik.tu-muenchen.de/raxml and will be contin-
uously developed and improved. The server runs on a
dedicated machine with 24 AMD cores and 128GB of
main memory.

Users can upload RTs and RAs and chose to align
QS to the RA with HMMER or upload an alignment
that already contains the QS. When the QS are to be
aligned by the server, they can also be clustered using
UCLUST (http://www.drive5.com/usearch/) prior to
alignment with HMMER. The UCLUST option can be
used to reduce the number of reads that will subse-
quently be placed and aligned. Finally, the Web server
also offers a JAVA-based result visualization tool that
uses the Archeopteryx framework (Han and Zmasek
2009) and provides a simple visualization of the read
distribution over the RT.

CONCLUSION

We have presented an accurate and scalable approach
for tree-dependent sequence comparison and compared
its accuracy with sequence comparison-based meth-
ods. A tree-dependent approach has methodological

advantages over standard, pair-wise, similarity-based
comparative approaches and the EPA is freely avail-
able for download as open source code and as a Web
service. We demonstrate that our approach may be sub-
stantially more accurate than standard techniques used
to analyze, for example, microbial communities. More
importantly, we demonstrate that achieving improved
accuracy does not require longer inference times and
that our approach is as fast as a simple BLAST-based
search when using additional heuristics.

The EPA also is relatively straightforward to paral-
lelize by applying a multigrain parallelization technique
(Stamatakis et al. 2010). On a multicore system with 32
cores and 64 GB of main memory, we were able to place
100,627 QS in parallel into a RT with 4874 taxa within
1.5 h. The application of the EPA is not limited to molec-
ular data only. Berger and Stamatakis (2010) have used
the EPA for the placement of fossil taxa onto a (molecu-
lar) RT of extant species.

A major challenge that remains to be solved consists
in aligning the QS to a given RA. Throughout this paper,
we have assumed that such an alignment was given or
that such an alignment can conveniently be generated
by aligning the individual QS to a profile-HMM of the
RA. Ideally, one would like to simultaneously place
and align the QS to the respective insertion edge. We
are currently working on a tree-dependent alignment
procedure for short read QS, which can be closely in-
tegrated with the placement process. Initial tests show
that with tree-dependent realignment, it is possible to
achieve higher EPA placement accuracy than with re-
alignment using profile-HMMs. Another challenge con-
sists of dealing with the matter of assigning short-read
sequences to a RA when there is compositional het-
erogeneity across the sequences. This is a particularly
important issue if sequences have acquired the same
nucleotide or amino acid composition independently. A
final challenge consists in developing appropriate visu-
alization tools and metrics for analyzing distributions
of reads on trees that have been computed by the EPA
or pplacer programs.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found at http://www
.sysbio.oxfordjournals.org/.
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Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D.,
Gordon J.I. 2005. Obesity alters gut microbial ecology. Proc. Natl.
Acad. Sci. U.S.A. 102:11070–11075.

Ley R.E., Harris J.K., Wilcox J., Spear J.R., Miller S.R., Bebout B.M.,
Maresca J.A., Bryant D.A., Sogin M.L., Pace N.R. 2006. Unexpected
diversity and complexity of the guerrero negro hypersaline micro-
bial mat. Appl. Environ. Microbiol. 72:3685–3695.

Ley R.E., Lozupone C.A., Hamady M., Knight R.D., Gordon J.I. 2008.
Worlds within worlds: evolution of the vertebrate gut microbiota.
Nat. Rev. Microbiol. 6:776–788.

Lozupone C., Knight R. 2005. UniFrac: a new phylogenetic method
for comparing microbial communities. Appl. Environ. Microbiol.
71:8228–8235.

Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar,
B.A., Lai T., Steppi S., Jobb G., Forster W., Brettske I., Gerber S.,
Ginhart A.W., Gross O., Grumann S., Hermann S., Jost R., Konig A.,
Liss T., Lussmann R., May M., Nonhoff B., Reichel B., Strehlow R.,
Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode
A., Schleifer K.H. 2004. Arb: a software environment for sequence
data. Nucleic Acids Res. 32:1363–1371.

Matsen F., Kodner R., Armbrust E.V. 2010. Pplacer: linear time
maximum-likelihood and Bayesian phylogenetic placement of se-
quences onto a fixed reference tree. BMC Bioinformatics. 11:538.

McHardy A.C., Martin H.G., Aristotelis T., Hugenholtz P., Rigoutsos I.
2007. Accurate phylogenetic classification of variable-length DNA
fragments. Nat. Methods. 4:63–72.

Moret B.M.E., Roshan U., Warnow T. 2002. Sequence-length require-
ments for phylogenetic methods. In: Guigo R., Gusfield D., editors.
Proceedings of Second International Workshop on Algorithms in
Bioinformatics (WABI 02) 2002. Berlin: Springer. p. 343–356 (Lec-
ture Notes in Computer Science; 2452).

Munch K., Boomsma W., Huelsenbeck J.P., Willerslev E., Nielsen R.
2008. Statistical assignment of DNA sequences using Bayesian phy-
logenetics. Syst. Biol. 57:750–757.

Nielsen R., Matz M. 2006. Statistical approaches for DNA barcoding.
Syst. Biol. 55:162–169.

Pruitt K., Tatusova T., Maglott D. 2007. NCBI reference sequences
(RefSeq): a curated non-redundant sequence database of genomes,
transcripts and proteins. Nucleic Acids Res. 35 (Database issue):
D61–D65.

Ronaghi M. 2001. Pyrosequencing sheds light on DNA sequencing.
Genome Res. 11:3–11.

Stamatakis A. 2006a. Phylogenetic models of rate heterogeneity: a
high performance computing perspective. Proceedings of 20th
IEEE/ACM International Parallel and Distributed Processing Sym-
posium (IPDPS2006); 2006 Apr 25–29; Rhodes Island, Greece. IEEE
Computer Society. p. 278.

Stamatakis A. 2006b. RAxML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics. 22:2688–2690.

Stamatakis A., Hoover P., Rougemont J. 2008. A rapid bootstrap algo-
rithm for the RAxML Web servers. Syst. Biol. 57:758–771.

Stamatakis A., Komornik Z., Berger S.A. 2010. Evolutionary placement
of short sequence reads on multi-core architectures. Proceedings
of IEEE/ACS International Conference on Computer Systems and
Applications (AICCSA-10); 2010 May 16–18; Hammamet, Tunisia.
IEEE Computer Society. p. 1–8.

Stamatakis A., Ludwig T., Meier H. 2005. RAxML-III: a fast pro-
gram for maximum likelihood-based inference of large phyloge-
netic trees. Bioinformatics. 21(4):456–463.

Strimmer K., Rambaut A. 2002. Inferring confidence sets of possibly
misspecified gene trees. Proc. R. Soc. B Biol. Sci. 269:137–142.

Turnbaugh P., Hamady M., Yatsunenko T., Cantarel B., Duncan A., Ley
R., Sogin M., Jones W., Roe B., Affourtit J., Egholm M., Henrissat B.,
Heath A.C., Knight R., Gordon J.I. 2008. A core gut microbiome in
obese and lean twins. Nature. 457:480–484.

Von Mering C., Hugenholtz P., Raes J., Tringe S.G., Doerks T., Jensen
L.J., Ward N., Bork P. 2007. Quantitative phylogenetic assessment of
microbial communities in diverse environments. Science. 315:1126–
1130.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/60/3/291/1667010 by guest on 03 April 2024


