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Abstract.— Many phylogenetic methods produce large collections of trees as opposed to a single tree, which allows the explo-
ration of support for various evolutionary hypotheses. However, to be useful, the information contained in large collections
of trees should be summarized; frequently this is achieved by constructing a consensus tree. Consensus trees display only
those signals that are present in a large proportion of the trees. However, by their very nature consensus trees require that
any conflicts between the trees are necessarily disregarded. We present a method that extends the notion of consensus trees
to allow the visualization of conflicting hypotheses in a consensus network. We demonstrate the utility of this method in
highlighting differences amongst maximum likelihood bootstrap values and Bayesian posterior probabilities in the placental
mammal phylogeny, and also in comparing the phylogenetic signal contained in amino acid versus nucleotide characters
for hexapod monophyly. [Bayesian posterior probabilities; consensus trees; hexapods; median networks; nonparametric
bootstrap; placental mammals; phylogenetic trees; quartet puzzling.]

The estimation of phylogenetic trees remains a central
task in evolutionary biology. Many methods have been
developed for constructing trees (Swofford et al., 1996).
However, a single point estimate of the optimal tree with
no measure of reliability is not always useful (Penny and
Hendy, 1986). For this reason it is common practice to
employ methods that generate a tree together with some
measure of support for individual edges (branches).
These methods include nonparametric bootstrap resam-
pling with replacement (Felsenstein, 1985), Bayesian ap-
proaches based on Markov chain Monte Carlo (MCMC)
methods (Huelsenbeck et al., 2002), and quartet puzzling
(Strimmer and von Haeseler, 1996).

A common feature of all these methods is that, rather
than producing a single tree, they produce a large set of
trees. In the case of nonparametric bootstrapping, this
is accomplished by resampling columns of the sequence
alignment and estimating a tree for each sample (Felsen-
stein, 1985). Bayesian approaches explore the phyloge-
netic landscape by using MCMC, a numerical method
where trees are sampled in proportion to their posterior
probability (Huelsenbeck et al., 2002). Quartet puzzling
provides a fast estimate of the maximum likelihood (ML)
tree by computing all ML quartets and then puzzling
them together (Strimmer and von Haeseler, 1996). This
puzzling operation is order dependent; so many random
orderings of the quartets are used, each producing a tree.

In order to summarize the large collections of trees
that these methods produce, consensus trees are usually
constructed in which the weights assigned to the edges
reflect their level of support. Bryant (2003) recently pro-
vided a comprehensive overview of consensus tree meth-
ods and their classification. Consensus trees display only
those signals that are supported by a large proportion of
the trees. However, although a consensus tree is a con-
cise way to summarize the information contained in a
large collection of trees, by definition it cannot display
conflicting signals. For instance, the following two situ-
ations would be impossible to distinguish using a con-

sensus tree: (1) One grouping of the taxa has slightly
more than 50% support and another conflicting group-
ing has slightly less than 50% support; (2) one grouping
of the taxa has slightly more than 50% support and no
other conflicting grouping has more than 10% support.
In addition, a lack of resolution in the consensus tree usu-
ally implies conflict, but a polytomy could be resolved
in many ways, only a few of which may have support
amongst the input trees.

We present a method that generalizes the notion of con-
sensus trees to allow conflicting evolutionary hypothe-
ses to be displayed within a network. This expands upon
a method proposed by Bandelt (1995). We illustrate the
use of consensus networks by focusing on two biologi-
cal examples that have recently generated controversies.
First, we explore the differences between Bayesian pos-
terior probabilities and bootstrap proportions in the case
of placental mammal phylogeny (Murphy et al., 2001b;
Suzuki et al., 2002), and second, we examine the extent
of the conflict between amino acid and nucleotide char-
acters for the origins of hexapods (Nardi et al., 2003a;
Delsuc et al., 2003).

THE CONSENSUS NETWORK METHOD

We begin with an example to illustrate the way in
which consensus trees can be generalized to consensus
networks. Consider the three trees shown in Figure 1A.
We begin by making a list of the splits that are dis-
played by the internal edges of these trees, together with
a weight indicating the number of trees displaying each
split (Figure 1B). The strict consensus tree is the tree that
displays only those splits which occur in all three of the
trees and, because none of the splits in our list have
weight 3, only the splits corresponding to the pendant
edges of the trees are displayed (Figure 1C). The majority-
rule consensus tree is the tree that displays only those
splits which occur in two or more of the trees (Figure 1D).
In this example, the required splits are those with weight
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FIGURE 1. The strict consensus tree (C), majority consensus tree (D), and consensus network (E) for three trees (A). Each edge in a phylogenetic
tree corresponds to a split or bipartition of the taxa set, as removing an edge from a tree divides it into two subtrees, which also partitions its
labels. The pendent edges always appear in a phylogenetic tree—these correspond to trivial splits that separate one taxon from the rest. All the
nontrivial splits displayed in the trees are listed in the weighted splits box (B).

2 (AB | CDE and ABC | DE) plus the splits corresponding
to the pendant edges of the input trees, and so the ma-
jority rule tree is identical to the first of the input trees.
Finally, Figure 1E shows the consensus network, which
displays those splits that occur in one or more trees, of
which there are 9. This network may be interpreted as
follows: Each split is represented by a class of parallel
edges, whose lengths are proportional to the weight as-
signed to the split. Note that even though, for example,
the splits AB | CDE and AC | BDE cannot be displayed
simultaneously by any tree, they are both displayed by
the network.

We now discuss our method in general. Consider
as input a collection of phylogenetic trees, all on the
same set of taxa. These could be generated by any of
the methods mentioned above or might be the result
of heuristic or exact searches that return many equally
well-supported trees. Next, as in the example, the list
of splits corresponding to edges in the trees is gen-
erated and weighted according to the frequency with
which they occur. The weighted splits are then dis-
played in a median network (Bandelt, 1994). These net-
works can be used to display any collection of weighted
splits and have some attractive properties. For exam-
ple, in the case where the collection of splits corre-
sponds to a tree (i.e., corresponds to the edges of a
given phylogenetic tree), the associated median network
is that tree. Moreover, median networks are straightfor-
ward to generate using an algorithm first introduced in
Bandelt et al. (1995), which has been implemented in the
freely available programs Spectronet (Huber et al., 2002)
and jSplits ( http://www-ab.informatik.uni-tuebingen.
de/software/jsplits/welcome en.html).

Even so, median networks can in general be rather
complex, depending on the extent to which the displayed
splits deviate from fitting into a tree (Huber et al., 2001).
To control this complexity, it is convenient to quantify
this deviation as follows. We say that two splits are in-
compatible if they cannot be displayed simultaneously by
any tree. Moreover, we say that a collection of splits is
k-compatible if it contains no subcollection of k + 1 pair-
wise incompatible splits. For instance, any collection of
splits that can be displayed in a tree is 1-compatible, as
it contains no pair of incompatible splits. Incompatible
collections of splits are represented by high-dimensional
hypercubes in median networks, which are difficult to
visualize. Thus the parameter k is important since, for
small k, collections of k-compatible splits are easier to
visualize with median networks.

If the collection of splits has a high degree of incom-
patibility, we can apply a filter to produce a subcollection
of splits that has a lower degree of incompatibility, and
hence results in a less complex network visualization. As
with the strict and majority consensus methods, we dis-
card those splits which are not displayed by more than
some threshold proportion, 0 < x ≤ 1, of the trees. A cru-
cial observation is that a collection of splits so generated
is �1/x� − 1 compatible (where � � indicates rounding up
to the nearest integer) (Holland and Moulton, 2003). For
example, if x is 1 then the resulting consensus network
will be the strict consensus tree, if x is 1/2 then the re-
sulting consensus network will be the majority-rule tree,
whereas if x is 1/3 then the consensus network will be at
most 2 dimensional; that is, it may contain 2-cubes but no
3-cubes. For convenience, this result is stated with proof
in the Appendix.
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Note that k-compatible split systems have been exten-
sively studied (Dress et al., 2001) and are strongly re-
lated to circular split systems and weakly compatible
split systems (Bandelt and Dress, 1992). Such split sys-
tems and related phylogenetic networks—such as split
graphs (Huson, 1998)—could in principle be used as al-
ternative methods for generating consensus networks
(Holland and Moulton, 2003).

A Python script has been written that reads a list of
trees in Newick format (bracket, comma notation) and
produces the corresponding weighted split system in
Nexus format. This file can be read by Spectronet (Huber
et al., 2002), which displays the corresponding consensus
network. Consensus networks can also be constructed
using jSplits (http://www-ab.informatik.uni-tuebingen.
de/software/jsplits/welcome en.html).

APPLICATIONS

The consensus network method has a wide range of
potential applications. Here, we will focus on two bio-
logical examples that demonstrate its utility in display-
ing conflicting hypotheses existing in large collections of
trees which cannot be displayed using standard consen-
sus tree analysis.

Indices of Phylogenetic Reliability and the Phylogeny
of Placental Mammals

The sequencing and analysis of both mitochondrial
and nuclear genes during the last decade has completely
redefined our vision of the placental tree (de Jong, 1998;
Waddell et al., 1999). Recently, two large-scale studies
robustly identified for the first time four major placen-
tal clades—Afrotheria, Xenarthra, Euarchontoglires, and
Laurasiatheria—and a close relationship between the
two latter ones (Madsen et al., 2001; Murphy et al., 2001a).
The subsequent combination of these two data sets pro-
posed a fairly resolved picture of placental mammal re-
lationships (Murphy et al., 2001b).

This latest study has been criticized on the grounds
that Bayesian posterior probabilities (PP) might provide,
in this case and others, overestimation of phylogenetic
reliability (Suzuki et al., 2002). In fact, large discrepan-
cies between PP and other measures of statistical sup-
port such as nonparametric bootstrap proportions (BP)
exist for a wide range of empirical studies (see Douady
et al., 2003 and references therein), and the nature of the
relationship between the two indices is still poorly un-
derstood from a theoretical point of view (Huelsenbeck
et al., 2002). These observations have recently generated a
bloom of papers aiming at understanding the relation be-
tween the PP and BP indices (Waddell et al., 2002; Wilcox
et al., 2002; Alfaro et al., 2003; Cummings et al., 2003;
Douady et al., 2003; Erixon et al., 2003; Simmons et al.,
2004). Credibility values of the Bayesian phylogenetic
inference seem to be excessively high under some cir-
cumstances (Suzuki et al., 2002; Cummings et al., 2003;
Douady et al., 2003; Erixon et al., 2003; Simmons et al.,
2004), whereas bootstrap percentages might be too con-
servative (Hillis and Bull, 1993; Wilcox et al., 2002; Alfaro

et al., 2003). Sensitivity to model misspecification has
been suspected to be an important factor in the behavior
of PP (Waddell et al., 2002) and the importance of model
adequacy in Bayesian phylogenetic analyses has been re-
cently outlined (Lemmon and Moriarty, 2004). A recent
paper by Huelsenbeck and Rannala (2004) attempted
to put this controversy to rest. They concluded that the
posterior probability of a tree can be interpreted as the
probability that the tree is the true tree, with the very
important proviso that the substitution model is correct.
When the model is misspecified they found that posterior
probabilities were biased upwards and that bootstrap
values were more robust. As current substitution mod-
els are frequently likely to be misspecified (Goldman,
1993), these results suggest that both posterior probabil-
ities and bootstrap values will continue to be of interest to
practitioners.

Some authors have also independently suggested
computing Bayesian BP or bootstrapped PP (BPBay) as an
alternative (Waddell et al., 2002; Douady et al., 2003). Al-
though time-consuming, this approach leads to Bayesian
support values closer to the bootstrap percentages and
allows the identification of excessively supported edges
in a Bayesian framework. The debate on the relation-
ships between BP and PP is reminiscent of the one en-
gendered by the introduction of the quartet puzzling
method (Strimmer and von Haeseler, 1996) and its as-
sociated measure of edge support expressed as reliabil-
ity percentages (RP). Indeed, it has been suggested that
RP are generally higher than the corresponding BP (Cao
et al., 1998).

We use the consensus network method to visualize the
differences between the indices PP, BPML, BPBay, and RP
by analyzing the collections of trees produced by each
method for the Murphy et al. (2001b) data set. The ap-
plication of this method also allows the visualization
of the remaining uncertainties in the placental mammal
phylogeny.

The data set of Murphy et al. (2001b) consists of the
concatenation of 22 genes (19 nuclear and three mito-
chondrial) representing a total of 16,397 unambiguously
aligned nucleotide sites for 44 taxa. This includes 42 pla-
centals distributed in Afrotheria (8 taxa), Xenarthra (3),
Euarchontoglires (11), and Laurasiatheria (20), plus two
marsupial outgroups. A schematic overview of the ex-
perimental design we used to compare the four indices
of phylogenetic reliability is presented in Figure 2.

The Bayesian analysis of the original data set was
conducted using MrBayes version 3.0b4 (Ronquist
and Huelsenbeck, 2003). Four incrementally heated
Metropolis-coupled Markov chains Monte Carlo
(MCMCMC) were simultaneously run for 1,000,000
generations, using the program’s default uninformative
priors as starting values for trees, edge lengths, and
model parameters. We used the GTR+I+�4 model
of sequence evolution estimated to be the best fitting
model by Modeltest 3.06 (Posada and Crandall, 1998).
Trees were sampled every 100 generations, resulting
in a collection of 10,000 MCMCMC sampled trees. We
discarded the first 5000 trees as a conservative burn-in
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FIGURE 2. Experimental design used to analyze the collections of trees issued from the four phylogenetic methods investigated in this study.
This scheme illustrates the relationships between the indices of phylogenetic reliability associated with the four methods: Bayesian posterior
probabilities (PP), maximum likelihood nonparametric bootstrap proportions (BPML), Bayesian nonparametric bootstrap proportions (BPBay),
and reliability percentages (RP).

to minimize the risk of making inferences before the
convergence of the chains. A consensus network of
the remaining 5000 trees was constructed using a 10%
threshold, which implies that only splits that appeared
in more than 500 of the 5000 trees were included
(Fig. 3A).

For the bootstrap-based analyses, we generated 100
nonparametric bootstrap pseudoreplicates of the origi-
nal data set using the program SEQBOOT of the PHYLIP
version 3.6a3 package (Felsenstein, 2003). These boot-
strap data sets were then subsequently analyzed under
the maximum likelihood criterion with PAUP∗ version
4.0b10 (Swofford, 2002) using the parameters of the
GTR+I+�4 model previously estimated by Modeltest on
the original data set. The ML heuristic searches were
conducted with a neighbor-joining (NJ) starting tree
and the tree bisection reconnection branch-swapping
algorithm. A consensus network of the 100 resulting
ML trees was then constructed using a 10% threshold
(Fig. 3B). The same 100 bootstrap data sets were also
analyzed under the Bayesian approach as described in
Douady et al. (2003). For each data set the Bayesian anal-
ysis was performed under exactly the same conditions
as the original data set described above. These analy-

ses resulted in 10,000 MCMCMC-sampled trees for each
bootstrap data set; the first half of each run was dis-
carded as the burn-in. A consensus network of the 100 ×
5000 = 500,000 remaining trees was constructed using a
10% threshold (Fig. 3C).

The ML quartet puzzling method was implemented
using the program Tree-Puzzle version 5.0 (Schmidt
et al., 2002). Quartets were analyzed under the TN+I +
�4 model of sequence evolution (the most general model
available). The model parameters were estimated dur-
ing the search and the analysis resulted in 10,000 quartet
puzzling trees. A consensus network of these 10,000 was
constructed using a both 10% and 25% thresholds. How-
ever, because the consensus network obtained with the
10% threshold was rather complex we chose to present
the 25% threshold network (Fig. 3D).

The consensus networks computed for the collections
of trees obtained by the four strategies are presented in
Figure 3. The consensus network built using the trees
resulting from the Bayesian analysis is very treelike, dis-
playing only two 2-cubes (Fig. 3A). All internal edges are
fully resolved except the relationships among Paenun-
gulata (elephant, hyrax, and sirenian) within Afrotheria
and the interrelationships of Ostentoria (pangolin and
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FIGURE 3. Consensus networks obtained from the analysis of the collections of trees produced by the four different methods for the placental
mammal data set of Murphy et al. (2001b). The name and composition of the four major placental groups are indicated: Afrotheria (AFR),
Xenarthra (XEN), Euarchontoglires (EUA), and Laurasiatheria (LAU), as well as the two marsupial outgroups (OUT). (A) Consensus network
(10% threshold) of the 5000 MCMCMC-sampled trees computed in the Bayesian analysis of the original data set. These trees are usually used to
derive Bayesian posterior probabilities (PP). (B) Consensus network (10% threshold) of the 100 trees computed in the maximum likelihood analyses
of the 100 nonparametric bootstrap-resampled data sets. These trees are usually used to compute maximum likelihood bootstrap proportions
(BPML). (C) Consensus network (10% threshold) of the 500,000 trees computed in the Bayesian analyses of the 100 nonparametric bootstrap-
resampled data sets. These trees can be used to calculate Bayesian bootstrap proportions (BPBay). (D) Consensus network (25% threshold) of the
10,000 trees computed in the quartet puzzling analysis of the original data set. These trees are usually used to obtain reliability percentages (RP).
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carnivores), Perissodactyla (horse, rhino, and tapir), and
Cetartiodactyla (llama, pig, ruminant, hippo, and whale)
within Laurasiatheria. Unlike the 50% majority-rule con-
sensus tree usually computed to obtain PP, the consensus
network allows the identification of two main competing
hypotheses among the three possible schemes of inter-
relationships for each of the two polytomies. As pointed
out in the original publication (Murphy et al., 2001b),
the Bayesian analysis seems to resolve the central ques-
tion of the position of the root by supporting the early
emergence of Afrotheria within placentals.

In contrast, the ML bootstrap consensus network re-
veals a congruent but less resolved picture of the pla-
cental mammal’s phylogenetic relationships with the oc-
currence of both 2-cubes and 3-cubes (Fig. 3B). Some of
the 2-cubes such as the one observed within Chiroptera
(bats) are elongated rectangles, indicating that one of the
two alternative hypotheses is only marginally supported
by the data. This is also the case in the 3-cube depicting
the relationships among paenungulates where the hy-
pothesis of a close relationship between the elephant and
the sirenian appears much less likely than the other two,
which are almost equally supported. However, the occur-
rence of multiple 3-cubes within Laurasiatheria indicates
that the relationships among Chiroptera, Ostentoria,
Perissodactyla, and Cetartiodactyla are left unresolved
by the ML bootstrap analysis. Interestingly, the ML boot-
strap consensus network reveals that two alternative hy-
potheses for the position of the root coexisted in this
data set. The early emergence of Afrotheria remains the
most likely, but the hypothesis of a close relationship
between Afrotheria and Xenarthra, named the Atlanto-
genata hypothesis (Waddell et al., 1999), appears in some
of the bootstrap trees. The third hypothesis of an early
emergence of Xenarthra within placentals, the classical
morphologically based Epitheria hypothesis (McKenna,
1975), is apparently not supported by this data.
Given the contrasting levels of resolution observed
between the Bayesian and ML bootstrap consensus
networks, the consensus network visualization tends to
support the observation that posterior probabilities are
generally higher than the corresponding bootstrap val-
ues. This illustrates the fact that the collection of trees
sampled in the Bayesian analysis are more restricted in
the treespace than the bootstrap trees.

The application of the bootstrap to the Bayesian
method yielded a consensus network very similar to
the ML bootstrap consensus network (Fig. 3C). Minor
differences between the two networks involve the ap-
pearance in the Bayesian bootstrap consensus network
of an additional 2-cube for the position of Eulipotyphla
(hedgehog, mole, and shrew) within Laurasiatheria and
the disappearance of the 2-cube linking primates to the
grouping of tree shrew and flying lemur. Apart from
these differences, the two networks agree on the lack
of resolution for the relationships within Laurasiathe-
ria and among Paenungulata. The same hierarchy of hy-
potheses is observed for the position of the root, with
the early emergence of Afrotheria being favored over
Atlantogenata. These results support the fact that the

application of the bootstrap resampling to the Bayesian
method leads to values comparable to the ML bootstrap
ones. This confirms the utility of this approach for com-
puting bootstrap support values in a Bayesian frame-
work, allowing the implementation of complex models
of sequence evolution (Waddell et al., 2002; Douady et al.,
2003).

In striking contrast to the other methods, the quar-
tet puzzling–based consensus network computed with a
10% threshold was highly unresolved and complicated
by the occurrence of hypercubes (data not shown). There-
fore, we present the consensus network obtained with
a more stringent 25% threshold (Fig. 3D). This led to
a more treelike consensus network roughly compatible
with the ones obtained for the other methods. However,
some of the 2-cubes do not appear in the other consen-
sus networks, such as the one disrupting the otherwise
strongly supported monophyly of Afrotheria or two ad-
ditional 2-cubes within rodents. It is noteworthy that
the position of the root appears particularly unresolved
with this method compared to the others. This might re-
flect the fact that phylogenetic reconstruction based on
quartets of species is highly sensitive to rate variation
between the taxa involved in the quartet (Philippe and
Douzery, 1994; Adachi and Hasegawa 1996a; Ranwez
and Gascuel, 2001). Indeed, the marsupials used here
as outgroups are very divergent from the placentals in
terms of base composition and substitution patterns,
likely leading to tree-reconstruction artefacts in the quar-
tets in which they are involved. The presence of quartets
that support conflicting positions of marsupials relative
to the placentals might be responsible for the observed
2-cubes at the root of the placental tree. The extreme sen-
sitivity of quartet-based methods of phylogenetic recon-
struction to systematic biases such as long-branch attrac-
tion phenomena (Felsenstein, 1978; Hendy and Penny,
1989) and their tendency to lead to too-symmetrical
topologies have been shown to be responsible for the
general limitations of this kind of method (Ranwez and
Gascuel, 2001).

The results obtained from the application of the
consensus network method highlight the remaining
uncertainties in the placental mammal phylogeny by
allowing the visualization of competing hypotheses co-
existing in the Murphy et al. (2001b) data set for different
edges (Fig. 3). Hence, one of the most puzzling ques-
tions remains the branching order between Ostentoria
(pangolins and carnivores), Perissodactyla (odd-toed un-
gulates), and Cetartiodactyla (even-toed ungulates) with
two competing hypotheses appearing as equally likely
even based on the Bayesian analysis: Ostentoria + Peris-
sodactyla or Cetartiodactyla + Perissodactyla. Similarly,
the tricky problem of paenungulates relationships is left
unresolved by the sequence data with the classical mor-
phologically based Tethytheria hypothesis (McKenna,
1975) of a close relationship between elephants and sire-
nians in fact appearing to be the only one to be strongly
rejected (Amrine-Madsen et al., 2003). However, the cen-
tral question remaining is the position of the root. Indeed,
the rooting of the placental tree is still unstable mainly
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because of the high degree of divergence observed be-
tween marsupials and placentals (Delsuc et al., 2002).
Recent additional sequence data still fail to statistically
resolve the question (Amrine-Madsen et al., 2003). The
study of indels in protein sequences has been shown to
prove useful by constraining the rooting possibilities (de
Jong et al., 2003). The study of rare genomic changes such
as protein sequence signatures or indels and SINEs inser-
tions might also be required to distinguish between the
alternative hypotheses revealed by the consensus net-
work method in order to firmly resolve the remaining
uncertainties in the phylogeny of placental mammals.

Amino Acids versus Nucleotides and the Origin of Hexapods

Recent analyses of mitochondrial data have raised
a controversy on the origins of six-legged arthropods
(hexapods). Analyzing a concatenation of the four most
conserved genes of the mitochondrial genome (COXI,
COXII, COXIII, CYTB), Nardi et al. (2003a) found strong
support for the paraphyly of hexapods due the emer-
gence of two collembolan species before crustaceans
and the other hexapod taxa. These results imply that
the colonization of land by hexapods happened at least
twice, and that the developmental and morphological
features shared by collembolans and others hexapods
consequently arose by convergence (Nardi et al., 2003a;
Thomas, 2003).

However, it has been shown that nucleotide-based
phylogenetic analyses of the initial 35-taxa data set of
Nardi et al. (2003a) can support the retrieval of the re-
spective monophyly of insects and hexapods when RY
(purine-pyrimidine) coding is used to alleviate the com-
positional bias at 1st and 3rd codon positions (Delsuc
et al., 2003). Furthermore, the analysis of nucleotides
with RY-coded 3rd codon positions from a 25-taxa data
set—excluding both closely related and rapidly evolv-
ing taxa—confirmed the previous results in support-
ing hexapod monophyly with a high Bayesian posterior
probability (0.99) but with an ML bootstrap value of
only 57 (Delsuc et al., 2003). The Bayesian analysis of
the amino acids of this 25-taxa data set yielded a tree
where hexapods were still paraphyletic but with a mod-
erate posterior probability value of 0.70 (Nardi et al.,
2003b). Although not statistically decisive, these anal-
yses showed that two contradictory signals concerning
the origin of extant hexapods seemed to coexist in this
mitochondrial data set and that their relative strengths
appeared to depend upon the use of amino acid or
nucleotide characters. Here, we have used the consensus
network representation to examine the extent of the con-
flicting signals contained in this data set by analyzing
the collection of trees produced by ML bootstrap and
Bayesian analyses of the nucleotides and corresponding
amino acids of the 25-taxa data set of Delsuc et al. (2003).

To make things comparable, the 25-taxa data set of
Delsuc et al. (2003) containing 3777 aligned nucleotide
sites was translated into the 1259 corresponding amino
acid sites using MEGA version 2.1 (Kumar et al., 2001).
The Bayesian analysis of the nucleotide data set with

RY-coded 3rd codon positions was conducted with Mr-
Bayes, using a partitioned-likelihood model attributing a
GTR+I+�8 model to the 1st and 2nd codon positions and
a two-state substitution model I+�8 to the RY-coded 3rd
codon positions. For the amino acid data set, we used the
empirical mitochondrial MtRev substitution matrix I+�8
(Adachi and Hasegawa, 1996b). For both data sets, five
incrementally heated MCMCMC chains were simultane-
ously run for 1,000,000 generations, using the program’s
default uninformative priors as starting values for trees,
edge lengths, and model parameters. Trees were sampled
every 10 generations, leading to a collection of 100,000
MCMCMC-sampled trees whose first 50,000 were dis-
carded as a the burn-in period of the chains. Consensus
networks of the remaining 50,000 trees were constructed
using a 10% threshold, which implies that only splits
that appear in more than 5000 of the 50,000 trees were
displayed.

ML bootstrap analyses of the two data sets were per-
formed by analyzing 100 bootstrap-resampled data sets
generated by SEQBOOT using PHYML version 2.0.3
(Guindon and Gascuel, 2003). The use of this very fast
ML program allowed parameters to be estimated for each
replication in a reasonable computation time. As 3rd
codon positions were RY-coded in the nucleotide data
set, we independently generated the bootstrap pseu-
doreplicates from each of the three codon positions us-
ing the same random seed in SEQBOOT. This ensured
that the proportion of each codon position was kept
constant in each bootstrap-resampled data set. These
concatenated bootstrap data sets were then analyzed un-
der the GTR+I+�8 model with PHYML. The amino acid
bootstrap-resampled data sets were analyzed under the
MtRev+I+�8 model. Consensus networks of the 100 ML
bootstrap trees obtained for each of the two data sets
were constructed using a 10% threshold.

The consensus networks obtained for the ML boot-
strap and Bayesian analyses of the amino acids and
nucleotides of the 25-taxa data set are compared in
Figure 4. The Bayesian analysis of both amino-acid and
nucleotide data sets yielded notably treelike consensus
networks (Fig. 4A, B), compared to the ML bootstrap
analyses of the same data sets that led to consensus
networks with many 3-cubes (Fig. 4C, D). As seen in
the previous example, this highlights the differences be-
tween the two methods, the collections of trees sampled
by the Bayesian analysis being much more restricted in
tree space than the ML bootstrap ones. The question of
the monophyletic or paraphyletic origin of hexapods re-
lies on the interrelationships between crustaceans (CRU),
collembolans (COL), and insects (INS), for which clas-
sical phylogenetic analyses of nucleotides and amino
acids appears to conflict in supporting hexapod mono-
phyly (Delsuc et al., 2003) or paraphyly (Nardi et al.,
2003b), respectively. The consensus network representa-
tion sheds light on this apparent conflict. It reveals that
if the Bayesian analysis of nucleotides indeed supports
hexapods monophyly with a split clearly separating
crustaceans from collembolans and insects (Fig. 4B), the
collection of trees coming from the Bayesian analysis of
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FIGURE 4. Consensus networks obtained using a 10% threshold from the analysis of the collections of trees produced by the ML bootstrap and
Bayesian analyses of amino acids and nucleotides of the 25-taxa arthropod data set used in Delsuc et al. (2003). The name and composition of the
different groups are indicated. (A) Consensus network of the 50,000 MCMCMC-sampled trees computed in the Bayesian analysis of the amino
acid data set. (B) Consensus network of the 50,000 MCMCMC-sampled trees computed in the Bayesian analysis of the nucleotide data set with
RY-coded 3rd-codon positions. (C) Consensus network of the 100 trees computed in the maximum likelihood analyses of the 100 nonparametric
bootstrap-resampled data sets of the amino acid data set. (D) Consensus network of the 100 trees computed in the maximum likelihood analyses
of the 100 nonparametric bootstrap-resampled data sets of the nucleotide data set with RY-coded 3rd-codon positions.
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amino acids contains two competing signals pertaining
to the origin of hexapods (Fig. 4A). Indeed, the consen-
sus network displays a 2-cube (Fig. 4A) according almost
the same credit to the hypothesis of hexapod monophyly
(COL+INS) as to their paraphyly (CRU+INS). The com-
parison of the ML bootstrap consensus networks also
shows that there is less signal pertaining to the question
of hexapod origins in the amino acid data set (Fig. 4C)
than in the nucleotide data (Fig. 4D). In fact, in the amino
acid consensus network, the relationships between crus-
taceans, collembolans, and insects are depicted by a com-
plex network (Fig. 4C), whereas the nucleotide consensus
network reveals a split in favor of hexapod monophyly
that clearly separates crustaceans from collembolans and
insects (Fig. 4D) as in the Bayesian nucleotide consensus
network (Fig. 4B).

Overall, the consensus network results on arthropods
phylogeny indicate that there is simply not enough
signal in these data sets, especially in the amino acid
data, to adequately resolve the position of collembolans.
This result is not necessarily surprising given the rela-
tively short length of the data sets (3777 nucleotide or
1259 amino acid sites) and the divergence level under
scrutiny (Philippe and Laurent, 1998). Indeed, mitochon-
drial genes are likely to contain sites that have undergone
many substitutions, causing difficulties for phylogenetic
reconstruction between the major arthropod lineages.
Such difficulties have already been observed for much
younger divergences such as the ones between placental
mammal orders (Springer et al., 2001). These considera-
tions have led to the preferential analysis of amino acid
characters for this data set (Nardi et al., 2003a, 2003b).
However, it has been demonstrated that amino acid char-
acters do not necessarily outperform nucleotides even
at deep phylogenetic levels (Simmons et al., 2002), es-
pecially when there is compositional bias in the data
(Foster and Hickey, 1999). These results are in agreement
with the fact that RY-coding the mtDNA nucleotide data
sets of Nardi et al. (2003) produces the more generally
accepted result of arthropod monophyly (Delsuc et al.,
2003). It is thus worth noting that the consensus network
of the relatively conservative ML bootstrap analysis of
nucleotides displays a split that supports the classically
admitted monophyly of hexapods by clearly separat-
ing them from crustaceans (Fig. 4D). For this reason,
it appears safe to consider the hypothesis of hexapod
paraphyly (Nardi et al., 2003a) as no more than a work-
ing hypothesis that needs to be tested further by the
future analysis of more slowly evolving nuclear genes.
Interestingly, recent improved analyses of the nuclear
small subunit rRNA (18S) retrieved the monophyly of
hexapods including collembolans, especially when us-
ing rRNA specific alignment and substitution models
(Kjer, 2004).

DISCUSSION

We have introduced a consensus method that extends
the notion of strict and majority consensus trees to al-
low the display of conflicting evolutionary hypotheses

within a collection of trees using a network. This method
can be used in conjunction with many existing phyloge-
netic techniques that generate large sets of trees such
as bootstrapping, Bayesian inference, and quartet puz-
zling. It might also be applicable in case the trees are
generated from multiple data sets (such as gene trees),
but this requires additional analysis, which will be pre-
sented elsewhere. Consensus networks are intended as a
visualization tool rather than as a confidence set of trees
(although they might be a useful display of a confidence
set). Their interpretation differs depending on the source
of the trees being displayed. For instance, a consensus
network of bootstrap trees has a different interpretation
to a consensus network of trees from an MCMC Bayesian
analysis, which has a different interpretation again to a
set of equally scoring parsimony trees.

Although consensus networks, like other network
methods such as median networks and split decompo-
sition, are capable of displaying incompatible split sys-
tems, unlike median networks they do not become too
visually complex. This is because the dimensionality of
the consensus network can be controlled by choosing an
appropriate threshold value. The worst-case complexity
is described in the Appendix, but in practice we found
that it was easy to use Spectronet and jSplits to experi-
ment with thresholds that produced 2- or 3-dimensional
networks, and that the thresholds used were typically
much lower than the theoretical worst case would sug-
gest. For example, many of the networks presented here
use a threshold of 10%, which means they could in theory
contain 9-dimensional hypercubes; however, in practice
this is not observed. One way to quickly choose an appro-
priate threshold value would be to examine the output
produced by PAUP* bootstrap runs or the MrBayes sumt
command to see how many splits have above, say, 20%
or 10% support.

Consensus networks and split decomposition (Bandelt
and Dress, 1992) could be used in combination, as the
two methods have different limitations and advantages.
Split decomposition represents distance data as a set of
weighted weakly compatible splits, where the weight for
each split is a function that is minimized over all quartets
(subsets of size four). The nature of this function means
that for large data sets the method tends to produce star-
like topologies with little resolution. In addition, split
decomposition will never produce a split system with
three mutually incompatible splits. Consensus networks
do not have these limitations but they could give a mis-
leading picture when tree estimation suffers from sys-
tematic bias. For example, in the “Felsenstein zone” for
parsimony (Felsenstein, 1978) you might get 100% boot-
strap support for the wrong tree; in this case the con-
sensus network of the bootstrap trees would show no
conflict but a split decomposition network could display
that the data do have conflicting signal.

We applied the consensus network technique to two
biological data sets. Consensus networks helped identify
areas of uncertainty that remain in the placental mam-
mal phylogeny and understand to what degree the com-
peting hypotheses have support in the data of Murphy
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et al. (2001b). The networks make it possible to com-
pare the different levels of support for clades that are
conferred using either an ML bootstrap or Bayesian ap-
proach. The results support the findings of various au-
thors (Waddell et al., 2002; Wilcox et al., 2002; Suzuki
et al., 2002; Alfaro et al., 2003; Cummings et al., 2003;
Douady et al., 2003; Erixon et al., 2003; Simmons et al.,
2004) that Bayesian posterior probabilities are generally
more extreme than the corresponding ML bootstrap val-
ues. The consensus network approach also confirms that
the method independently suggested by Waddell et al.
(2002) and Douady et al. (2003) of computing a bootstrap-
based measure of phylogenetic reliability in a Bayesian
framework represents a valuable alternative to posterior
probabilities. Consensus networks also shed light on ap-
parently conflicting results for hexapod monophyly us-
ing either nucleotide or amino acid characters. As the
networks are capable of displaying conflicting hypothe-
ses, it was easy to see that the amino acid data has quite
strong support for both trees where hexapods are mono-
phyletic and trees where they have paraphyletic origins.
This information would have been lost in a standard con-
sensus tree analysis in which the two data sets would
have appeared to be in conflict.

Many phylogenetic techniques expend significant
computational effort to generate large sets of trees; it is
not only wasteful to throw away much of the informa-
tion by restricting their display to a single tree, but it can
also be misleading because it is the conflicting signals
that are often of most interest to evolutionary biologists.
For example, this kind of approach might be useful for
representing multiple gene trees, particularly for organ-
isms such as bacteria and archea, whose genomes under-
went numerous horizontal gene transfer events and for
which the adequate representation might be a phyloge-
netic tree of the “core” untransferred genes nested within
a network of all genes (Philippe and Douady, 2003).
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APPENDIX

We briefly describe the result indicated in Consensus Network
Method. Suppose that X is a finite set. A split A|B of X is a biparti-
tion of X; i.e., a partition of X into two nonempty sets A and B with
A∪ B = Xand A∩ B = Ø. We call a collection of splits a split system
for short. A split system is called compatible if there is a phylogenetic
tree that displays every split in the system (see Consensus Network
Method). We say that a split system is incompatible if it contains no sub-
set of cardinality two that is compatible. Note that a split system that
is not compatible need not be incompatible. For k a positive integer,
we say that a split system is k-compatible if it contains no incompatible
subset of splits with cardinality k + 1.

The concept of k-compatibility was introduced and studied in Dress
et al. (2001). By definition, a k-compatible split system is compatible if
and only if k = 1, in which case the median network associated to it
must be a tree, but, as k increases, the associated median network can
become progressively more complex. We now state the main result of
Holland and Moulton (2003).

Theorem.—Given N phylogenetic trees each with leaf set X and
some 0 < x ≤ 1, let Sx denote the split system containing those splits
of X that are displayed in �Nx�or more of these trees. Then Sx is �1/x�-
compatible.

Proof.—Suppose that Sx contains �1/x� + 1 incompatible splits.
Then, because each of these splits is displayed by at least �Nx�
of the trees, it follows by the Pigeonhole Principle that one of the
trees must display at least two of the incompatible splits. But this is
impossible.

This result allows control of the complexity of the median network
associated to the split system: Larger values of x imply a lower extent
of incompatibility in the split system Sx . Note that in case x = 1, the
median network associated to split system Sx will be the strict con-
sensus tree associated to the phylogenetic trees, and that if x = 1/2,
the associated median network will be the majority-rule consensus
tree.
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