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Abstract.—Evolutionary biologists have adopted simple likelihood models for purposes of estimating
ancestral states and evaluating character independence on speci�ed phylogenies; however, for pur-
poses of estimating phylogenies by using discrete morphological data, maximum parsimony remains
the only option. This paper explores the possibility of using standard, well-behaved Markov models
for estimating morphological phylogenies (including branch lengths) under the likelihood criterion.
An important modi�cation of standard Markov models involves making the likelihood conditional on
characters being variable, because constant characters are absent in morphological data sets. Without
this modi�cation, branch lengths are often overestimated, resulting in potentially serious biases in
tree topology selection. Several new avenues of research are opened by an explicitly model-based
approach to phylogenetic analysis of discrete morphological data, including combined-data likeli-
hood analyses (morphology C sequence data), likelihood ratio tests, and Bayesian analyses. [Discrete
morphological character; Markov model; maximum likelihood; phylogeny.]

The increased availability of nucleotide
and protein sequences from a diversity
of both organisms and genes has stimu-
lated the development of stochastic models
describing evolutionary change in molecu-
lar sequences over time. Such models are
not only useful for estimating molecular
evolutionary parameters of interest but also
important as the basis for phylogenetic
inference using the method of maximum
likelihood (ML) and Bayesian inference. ML
provides a very general framework for esti-
mation and has been extensively applied in
diverse �elds of science (Casella and Berger,
1990); however, the popularity of ML in
phylogenetic inference has lagged behind
that of other optimality criteria (such as max-
imum parsimony), primarily because of its
much greater computational cost for evalu-
ating any given candidate tree. Recent devel-
opments on the algorithmic aspects of ML
inference as applied to phylogeny recon-
struction (Olsen et al., 1994; Lewis, 1998;
Salter and Pearl, 2001; Swofford, 2001) have
succeeded in reducing this computational
cost substantially, and ML phylogeny esti-
mates involving hundreds of terminal taxa
are now entering the realm of feasibility.
Bayesian methods (based on a likelihood
foundation) offer the prospect of obtaining
meaningful nodal support measures with-
out the unreasonable computational burden
imposed by existing methods such as boot-
strapping (Rannala and Yang, 1996; Yang
and Rannala, 1997; Larget and Simon, 1999;

Mau et al., 1999; Huelsenbeck, 2000a). Fur-
thermore, the Bayesian approach makes it
possible to test hypotheses involving phylo-
genies without depending on any particular
hypothesized tree (e.g., Huelsenbeck, 2000b),
so likelihood models are expected to play an
ever-increasing role in systematics and re-
lated disciplines.

ML, least squares, and minimum evolu-
tion are all distinguished from maximum
parsimony in being model-based optimal-
ity criteria. ML and maximum parsimony
are similar in being discrete character meth-
ods, unlike minimum evolution and least
squares, which are based on a matrix of
pairwise evolutionary distances between ter-
minal taxa. Despite the early availability
of a likelihood model for continuous traits
(Felsenstein, 1973), the use of model-based
optimality criteria has heretofore been re-
stricted primarily to molecular data, with
maximum parsimony being the only crite-
rion applied to both discrete morphological
and molecular data. Models have been ap-
plied to discrete morphological traits, but the
purpose of these models has been to infer
ancestral states (e.g., Schluter et al., 1997;
Mooers and Schluter, 1999; Pagel, 1999), to
assess the magnitude of the evolutionary
correlation between different traits (Pagel,
1994), or to investigate the properties of other
optimality criteria (Felsenstein, 1981a), but
not for phylogeny reconstruction per se.

Although no one has suggested using like-
lihood for estimating trees, two models have
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914 SYSTEMATIC BIOLOGY VOL. 50

been previously described for purposes of
investigating properties of the parsimony
method. Goldman (1990) described a sim-
ple likelihood model (hereafter referred to as
the G90 model) that always chooses the exact
same tree (or trees) as equal-weighted Fitch
parsimony. Later, Penny et al. (1994) and
Tuf�ey and Steel (1997) found that a very dif-
ferent model (hereafter, the TS97 model) also
selects trees identical to those selected by par-
simony. The G90 model has only one branch
(i.e., edge) length parameter that governs the
probability of observing a change across any
branch of the tree; however, the model re-
quires implicit estimation of the ancestral
character states at each interior node of the
tree. Goldman (1990) emphasized that a neg-
ative side effect of these nuisance parame-
ters, the number of which grows with the
number of characters, is likely to be statistical
inconsistency. A method is statistically con-
sistent if the estimates produced by the
method come closer to the true value of the
quantity being estimated as the sample
size increases to in�nity (Casella and
Berger, 1990:323). Statistical consistency
is thus a desirable asymptotic property
of a statistical inference method, as has
been pointed out numerous times with
respect to the choice of likelihood versus par-
simony methods (e.g., Felsenstein, 1978).

The TS97 model is also very parameter-
rich. For a problem involving n taxa and m
characters, the TS97 model has effectively
m(2n ¡ 3) separate parameters (a separate
parameter for every branch/character com-
bination). This model was called the “no
common mechanism” model by Tuf�ey and
Steel because it allowed the rate of evolution
for one particular branch and one particu-
lar character to be independent of the rate
for any other branch and every other char-
acter. Tuf�ey and Steel (1997:599) cautioned,
however, that “. . . the number of parame-
ters being estimated grows linearly with the
number of characters, so the statistical con-
sistency of these two methods is not guaran-
teed by standard results. Indeed, the former
method can be provably statistically incon-
sistent . . . .” Here, “former method” refers to
the “no common mechanism” model. The
G90 and TS97 models thus have very little
in common except the fact that they are both
parsimony models (i.e., the set of tree topolo-
gies chosen is identical to the set chosen by
parsimony) and the number of parameters

in both grows as a function of the number of
characters.

Goldman (1990) emphasized the impor-
tance of using only structural parameters
(parameters that appear in the likelihood
function for all characters) and avoiding
the use of incidental parameters (parame-
ters that appear in the likelihood functions
for only some characters) in models used
for phylogenetic inference. In the classical
models currently used for ML phylogeny
reconstruction, all parameters are struc-
tural parameters. For example, the transi-
tion/transversion rate ratio parameter used
in the HKY85 model (Hasegawa et al., 1985)
is necessary for calculating the likelihood for
every site, and the same can be said for any
branch length parameter and any nucleotide
frequency parameter in this model. In con-
trast, the ancestral states estimated in the G90
model are incidental parameters, since their
value is only used in calculating the likeli-
hood associated with a single character. Like-
wise, the branch probability parameters of
the TS97 model are incidental parameters be-
cause each is used in computing the likeli-
hood for only one character. Models incorpo-
rating incidental parameters are susceptible
to problems with statistical inconsistency,
and Goldman (1990) noted that the pres-
ence of incidental parameters can make es-
timates of the structural parameters in the
model inconsistent as well. There is a grow-
ing tendency to discount the importance of
statistical consistency in phylogeny inference
(e.g., Farris, 1999); however, avoiding (where
possible) models that may be statistically
inconsistent even when their assumptions
are not violated seems prudent. The G90
and TS97 parsimony models both have this
property.

The purpose of this paper is to discuss
the applicability of ML phylogeny infer-
ence to discrete morphological data. The
TS97 model provides an excellent compar-
ison because it gives results identical to
parsimony, currently the only option for phy-
logenetic analyses involving discrete mor-
phological characters. The G90 model is less
attractive for comparison because its as-
sumption of equal branch lengths and esti-
mated ancestral states make it substantially
different from the models currently used
in phylogenetics for sequence data. In the
terminology of Steel and Penny (2000), TS97
and the standard substitution models used
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for sequence data are all “maximum average
likelihood” methods, whereas G90 is in a
different class, the “most-parsimonious like-
lihood” methods. In this paper, I strongly em-
phasize avoiding incidental parameters so
that the model will be well-formulated and
statistically well-behaved. I also show that
standard Markov models, that is, general-
izations of the Jukes and Cantor (1969:JC69)
model, represent modi�ed versions of the
TS97 model and avoid the aforementioned
problems with incidental parameters that
lead to potential statistical inconsistency. Dis-
cussion will center around whether the mod-
i�cations necessary to make the TS97 model
statistically sound are biologically justi�ed. I
conclude with a discussion of interesting ex-
tensions to the basic model and touch on the
wealth of opportunities that model-based ap-
proaches open up for systematic biologists.

A BASIC LIKELIHOOD MODEL FOR
DISCRETE MORPHOLOGICAL DATA

The model adopted here for ML phylo-
genetic analyses of discrete morphological
data is not by any means novel. Some ver-
sion of the model has been used by nu-
merous authors (Jukes and Cantor, 1969;
Neyman, 1971; Farris, 1973; Cavender, 1978;
Felsenstein, 1981a; Pagel, 1994; Penny et al.,
1994; Schultz et al., 1996; Schluter et al., 1997;
Tuf�ey and Steel, 1997; Mooers and Schluter,
1999) for several different purposes, even for
analysis of discrete morphological character
evolution. By the time it was adopted by
Jukes and Cantor, this model had already
enjoyed a long history in biology, for exam-
ple, forming the basis of Haldane’s (1919)
map distance function. Rather than propose
a new model, my purpose here is to exam-
ine the consequences of applying this type
of model to morphological character data
and to describe modi�cations needed to ac-
commodate the peculiarities of discrete mor-
phological data sets. I will hereafter use the
acronym Mk to refer to this family of models
(where the “M” stands for “Markov” and “k”
refers to the number of states observed). The
Mk model is a generalized JC69 model, the
latter representing the special case of k D 4
(the JC69 model could thus be referred to
as the M4 model). The Mk model assumes
that a lineage is always in one of k possible
states (k ¸ 2), with no state considered ple-
siomorphic or apomorphic a priori. Along a

particular branch of the phylogeny, a char-
acter can change state at any instant in time,
with the probability of such an event being
equal for all such time intervals along the
branch. An instant is de�ned to be an in-
�nitesimal period of time, denoted dt, during
which there can be at most one substitution
(D change of state) event. Different instanta-
neous time periods are independent of one
another with respect to the probability of a
character state change, and the probability
of change is symmetrical (i.e., the instanta-
neous probability of changing from state i to
state j is the same as the instantaneous prob-
ability of changing from j to i). The length
of a branch under the Mk model is de�ned
to be the expected number of changes per
character across the branch, which is equal to
(k ¡ 1) ®t, where ® is the instantaneous rate of
any particular transition between states, and
t is the amount of time represented by the
branch. The k £ k instantaneous rate matrix
for the Mk model is

Q D ®

2

66664

1 ¡ k 1 : : : 1
1 1 ¡ k : : : 1
...

...
. . .

...
1 1 ¢ ¢ ¢ 1 ¡ k

3

77775

(Tuf�ey and Steel, 1997; their eq. 4), the tran-
sition probabilities are

Pi i (t) D
1
k

C
k ¡ 1

k
e¡k®t ,

Pi j (t) D
1
k

¡
1
k

e¡k®t,

and the stationary distribution (relative fre-
quencies of the states at equilibrium) is the
vector [ 1

k , 1
k , : : : , 1

k ] of length k. Once the
model is thus speci�ed, using it to infer phy-
logenies involves straightforward applica-
tion of the methods outlined by Felsenstein
(1981b; see also Swofford et al., 1996). The ra-
tionale for the use of ML inference in general
is discussed at length in Edwards (1972).

RATIONALE FOR USING THE MK MODEL

The Mk model may strike many systema-
tists as being highly unrealistic. One possi-
ble objection lies in the fact that the model
predicts that the probability of observing
a change along a branch in a phylogeny
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916 SYSTEMATIC BIOLOGY VOL. 50

increases with the amount of time associated
with the branch. This appears on the surface
to be explicitly gradualistic, excluding punc-
tuated equilibria as a mode of morphological
evolution. Another point of contention lies in
the fact that the model allows characters to
change freely back and forth between two
states, which may strike many biologists as
unrealistic for most discrete morphological
features. Both of these concerns will be ad-
dressed at the end of this section.

My primary tool in the defense of the Mk
model is the fact that Tuf�ey and Steel’s
(1997) parsimony model (the TS97 model),
when used within the framework of ML in-
ference, has the property of always choosing
the same tree(s) as equally-weighted parsi-
mony, even to the point of choosing multiple
trees if there are multiple most-parsimonious
solutions. That is, the likelihood under TS97
is a monotonically decreasing function of the
parsimony score, meaning that a likelihood
analysis using TS97 is identical to a parsi-
mony analysis using equally-weighted par-
simony (the tree that minimizes the number
ofsteps also maximizes in L). Thus, the justi�-
cation for using likelihood for morphological
data instead of parsimony hinges on whether
the differences between Mk and TS97 are
acceptable from both a biological and a sta-
tistical standpoint.

The TS97 model collapses to the Mk model
if each branch of the tree is assumed to have
the same length for all characters. This re-
duces the number of parameters in the model
by a factor of m, where m is the number of
characters. More importantly, this restriction
converts a model consisting entirely of inci-
dental parameters (TS97) to one consisting
entirely of structural parameters (Mk). The
addition of more data in the form of char-
acters to the Mk model thus provides more
information relevant to estimating this �xed
number of parameters (the branch lengths),
whereas adding one more character to the
TS97 model is used only in estimating the
additional 2n ¡ 3 branch lengths speci�c to
that character.

Placing restrictions on the number of
branch lengths makes the Mk model more
statistically reliable, but also results in an
apparent loss of biological realism: A char-
acter is no longer (under Mk) allowed to
change its rate to an arbitrary value from
branch to branch (as it is allowed to do in the
TS97 model). If the TS97 model is examined

closely, however, determining which of the
two models is actually more biologically re-
alistic becomes less clear. ML estimators tend
to adopt extreme values when the amount of
data applicable to their estimation drops be-
low a critical threshold. A simple example
concerns estimating the proportion of heads
for a coin. If we are not willing to assume that
the coin is perfectly fair, and thus estimate the
proportion of heads (p) rather than assume
its value is 0.5, the formula for the maximum
likelihood estimator is simply the number of
heads observed divided by the total number
of �ips. If the coin is �ipped just once, the
ML estimate using this formula will either
be 0.0 or 1.0, depending on whether a tail
or a head was observed, respectively. These
extreme values give way to much more rea-
sonable estimates if the coin is �ipped many
times, of course. If p is treated as a structural
parameter, adding more data is bene�cial to
the estimation process because the model is
statistically consistent. If, instead, a new pa-
rameter (pi ) is added to the model for ev-
ery �ip i (i.e., we are not willing to assume
that the probability of heads is the same from
one �ip to the next), the estimates for all of
these parameters will be either 0.0 or 1.0, and
adding data from �ip j clearly will not help
re�ne the estimates of parameters pi (i < j ).

A similar pathology affects the TS97
model, at least for the two-state case. The
ML estimates of the branch lengths in the
TS97 model are all either 1 or 0.0, depend-
ing on whether a parsimony reconstruction
would yield a change or no change across
the branch, respectively. In a direct analogy
to the coin-�ipping example, there is sim-
ply too little information to reliably estimate
2n ¡ 3 parameters with only n observations.
Thus, TS97 is also less than realistic from a
biological standpoint: Few biologists would
be comfortable with a morphological trait
changing state an in�nite number of times
along a particular branch. Although Mk
could (with a suitable rate heterogeneity
model attached) be made to allow rates to
vary across characters, it would allow only
tree contraction or expansion in this case. The
TS97 model allows each character to have
a different rate on every branch (an “any-
thing goes” approach), but this results in es-
timates of rates that are not realistic (the rate
of change is either zero or in�nity).

It should be pointed out (see the example
in Tuf�ey and Steel, 1997:596–597) that these

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/50/6/913/1628902 by guest on 13 M

arch 2024



2001 LEWIS—MAXIMUM LIKELIHOOD MORPHOLOGICAL PHYLOGENY 917

extreme branch length estimates are charac-
teristic of TS97 only in the two-state case.
When the number of states exceeds two,
some of the branch lengths are nonidenti�-
able, meaning the likelihood is the same for
any possible value. Although perhaps more
biologically acceptable, this behavior is nev-
ertheless a symptom of model overparame-
terization.

Before leaving the topic of biological re-
alism, I will brie�y address the two issues
raised at the outset. The �rst objection con-
cerned the fact that the probability of change
increases with time in the Mk model. This
might seem to enforce a gradualist perspec-
tive on morphological evolution. In fact, it
is only the average amount of change (func-
tions involving the product ®t) that appears
in the transition equations for the Mk model.
It does not matter whether this average
amount was realized in one bout of change
(at the speciation event, for example) or grad-
ually over the entire period represented by
the branch.

The second objection concerned the fact
that characters are allowed to change state
numerous times under the Mk model. How-
ever, a modi�ed Mk model can be created
with the stipulation that the character can
change either once or not at all. Interestingly,
if rate homogeneity across characters is as-
sumed, the ML score of a tree under such
a model is identical to the ML score under
the Mk model. The rate of evolution required
to achieve a speci�c probability of observing
a difference across a branch differs between
these two models, but both explain the data
equally well and thus yield identical likeli-
hood scores. This equivalence means there is
no disadvantage to using the Mk model: It
will never lead us to prefer a different tree
from the modi�ed version in which charac-
ters are allowed to change only at most one
time on any given branch.

THE PROBLEM OF CONSTANT
CHARACTERS

A potential obstacle to the use of the Mk
model lies in the fact that systematists never
record characters if they are constant (i.e.,
if every taxon in the analysis has the exact
same state for the character). In fact, it is dif-
�cult to imagine a way in which a set of
morphological characters could be circum-
scribed such that the “proper” number of

constant characters is included in the data
set. This acquisition bias never arises in the
use of likelihood for molecular phylogenet-
ics because the linear nature of nucleic acids
and proteins allows easy circumscription of
a range of characters, including constant as
well as variable characters. Acquisition bias
is problematic because mean rates of evolu-
tion embodied in the branch length param-
eters will be overestimated if only variable
characters are present in the dataset. Because
branch lengths play an important role in de-
termining the overall likelihood for a particu-
lar tree topology, such overestimation, if not
corrected, would lead to bias in tree topol-
ogy inferences. Fortunately, one can correct
for acquisition bias, and the remainder of this
section is devoted to an explanation of how
this is accomplished for the Mk model.

Characters can be divided into (1) parsi-
mony-informative characters, which can po-
tentially have different parsimony character
lengths on different trees; (2) autapomorphic
characters, which are variable but have the
same length on all trees; and (3) constant
characters, which have only one state. Be-
cause autapomorphic characters are consid-
ered uninformative by many systematists us-
ing parsimony, these too are often left out of
data sets used in phylogenetic analyses (for
an exception, see Funk and Wagner, 1995).
One of the reasons likelihood methods resist
long-branch attraction problems is that they
can accept an explanation of similarity based
on convergent or parallel evolution, whereas
parsimony allows only historical explana-
tions of similarity among the terminal taxa.
Branch length estimates determine whether
likelihood is willing to accept, so to speak,
an explanation based on convergence or par-
allelism over an explanation based solely on
history (i.e., simple inheritance). Likelihood
methods may choose to keep separate two
lineages having very long branches because
the evidence for convergence/parallelism is
(in this case) stronger than the evidence for
shared history (Felsenstein, 1978). If branch
lengths are incorrectly estimated (say, con-
sistently overestimated), likelihood methods
would be biased in their choice of tree topol-
ogy. Thus, it is important to in some way cor-
rect for the systematic omission of constant
characters. Autapomorphic and highly vari-
able characters do not present the same prob-
lem as constant characters, being identi�able
and at least enumerable.
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918 SYSTEMATIC BIOLOGY VOL. 50

The technique for freeing the Mk model of
this problem is borrowed from Felsenstein
(1992), who encountered a similar problem
in the analysis of restriction site data. The so-
lution involves computing a conditional like-
lihood instead of the normal likelihood, the
condition being that only variable characters
are present in the data. The likelihood for
character c (Lc ) is proportional to the prob-
ability of the data (Dc ) for character c, given
the parameters of the model, which for the
Mk model comprises the tree topology (T )
and branch lengths (3):

Lc (T, 3 j Dc ) / Pr(Dc j T, 3) (1)

If event E corresponds to the case in which
character c is variable, the likelihood (as it is
normally computed) can be written:

L c(T, 3 j Dc ) / Pr(Dc , E j T, 3) (2)

The likelihood for character c conditional on
E is thus proportional to:

Pr(Dc j T, 3, E) D
Pr(Dc , E j T, 3)

Pr(E )
(3)

where Pr(E) refers to the probability that evo-
lution would have created a character that is
variable. This quantity is just 1 ¡ Pr(not E),
where Pr(not E) is the probability that evolu-
tion would create a constant character. Pr(not
E) can be obtained by using a dummy charac-
ter having the same state at all terminal nodes
(see Felsenstein, 1992). The numerator on the
right side of Eq. 3 is simply the likelihood as it
would normally be computed, with the quo-
tient being the conditional likelihood used to
account for the acquisition bias in the data.

To illustrate the importance of making this
correction, a computer simulation was per-
formed in which data were generated accord-
ing to the Mk model and the tree in Figure 1;
constant characters were thrown away; and
branch length estimates and the preferred
tree topology were recorded under both
the uncorrected Mk model and the version
corrected for acquisition bias. The results
(Table 1) indicate that one can easily obtain
overestimated branch lengths unless the con-
ditional likelihood is utilized, and (for this
speci�c example) the probability of recon-
structing the correct tree dropped from 0.998

FIGURE 1. Model tree used for simulations to illus-
trate the importance of conditioning the likelihood on
the fact that all characters are variable. The numbers
beside the branches represent the expected number of
changes per character along the branch.

(conditional likelihood approach) to 0.740
(uncorrected likelihood approach).

To avoid possible confusion between the
use of the Mk model and the version that
conditions on variable characters, I will use
the term Mkv to refer speci�cally to the con-
ditional version of the Mk model.

EXTENDING THE MK MODEL

The Mk model may be easily extended
to accommodate other factors deemed im-
portant in the evolution of morphological
characters. A recent emphasis in models for
nucleotide sequence data involves allowing
rates of evolution to vary across sites (rate
heterogeneity) instead of assuming a con-
stant rate across all sites (rate homogene-
ity) (Churchill et al., 1992; Reeves, 1992;
Sidow and Speed, 1992; Yang, 1993, 1994;
Felsenstein and Churchill, 1995). Rate het-
erogeneity is possibly as much of a factor in
morphological character data as in sequence
data. Allowing rate heterogeneity among
characters for morphological data is there-
fore reasonable, and is easily accomplished
by using the same techniques currently avail-
able for sequence data under a likelihood
framework. Of the three basic methods in
use, assuming a discrete gamma distribution
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TABLE 1. Results of simulations designed to illustrate the importance of correcting for acquisition bias. The
model tree used for the simulations was (A:0.2, B:0.05, (C:0.2, D:0.05)X:0.05), for each simulated data set, characters
were generated until 200 variable characters were obtained (thus, the overall number of simulated characters varied
among simulation replicates). Each simulated dataset was analyzed with both the uncorrected model and the Mk
model corrected by conditioning on the fact that only variable characters were observed (i.e., the Mkv model). The
means (§SD) over 1,000 replicates are reported. Branch length estimates from the uncorrected model were edited
such that values exceeding 1 £ 106 were set to exactly 1 £ 106. Thus, the actual means (and SDs) for the uncorrected
model were greater than the numbers shown here.

True branch
length Mk (uncorrected) Mkv (corrected)

Percent correct — 74.0 99.8
Branch A 0.2 241,750 (§349,100) 0.206 (§0.060)
Branch B 0.05 0.43210 (§0.13756) 0.050 (§0.018)
Branch X 0.05 54.646 (§1,725.3) 0.052 (§0.023)
Branch C 0.2 143,950 (§228,910) 0.206 (§0.059)
Branch D 0.05 0.022 (§0.054) 0.051 (§0.019)

for the relative rates (Yang, 1994) is probably
the most appropriate for discrete morpholog-
ical characters. The hidden Markov model of
Felsenstein and Churchill (1995) requires es-
timation of more parameters than does the
discrete gamma approach (which requires es-
timation of only a single extra structural pa-
rameter, the gamma shape parameter ®), but
has the advantage of not requiring the as-
sumption that the relative rates are gamma-
distributed. The hidden Markov model al-
lows for correlation between neighboring
characters, but this is not useful in the con-
text of morphological characters because the
position of characters within the data ma-
trix is arbitrary. The invariant sites models
(Churchill et al., 1992; Reeves, 1992; Sidow
and Speed, 1992; Steel et al., 2000) assume
that a certain fraction of characters do not
evolve at all (i.e., they have a change rate of 0),
which does not apply if all characters scored
are variable.

Another extension to the Mk model of in-
terest to systematists would allow the rate
of change from state i to state j to differ
from the rate governing the opposite change
(from j to i). This “unequal rate” Mk model is
uncomplicated for two-state characters, and
the transition probabilities for this general-
ization are available in Taylor and Karlin
(1984:256) and Schultz et al. (1996), among
other places. Because such models imply a
speci�c stationary (equilibrium) distribution
for the character states, it is customary (to
save time) in nucleotide sequence models to
assume stationarity and use the empirical fre-
quencies of the different nucleotides in lieu
of estimating the base frequencies by maxi-
mum likelihood. If there are no missing data
or gaps, the empirical frequency of the base

A is simply the number of A’s in the data
matrix divided by the total number of nu-
cleotides (number of taxa times the number
of sites). Using the same approach for mor-
phological characters would be meaningless,
because state 0 for one character is not at all
the same thing as state 0 for any other char-
acter in the data matrix. Thus, application of
the unequal-rate Mk model makes sense for
evaluating single characters, but application
of the model for multiple characters involves
the unrealistic assumption that all characters
share the same ratio of forward to reverse
ratesof change (despite the fact that the states
for different characters receive their 0 or 1
designation arbitrarily!).

The most statistically sound way around
this complication would involve assuming
a distribution for the equilibrium frequency
of state 0 across characters. For example,
the frequency of state 0 (¼0) could be as-
sumed to have a Beta distribution. The Beta
distribution is determined by two parame-
ters, a and b, which would be the only ad-
ditional parameters estimated from the data,
and because data from all characters would
participate in estimating a and b, these are
structural parameters and hence in keeping
with the ban on the use of incidental pa-
rameters. This is similar to the assumption
of a gamma distribution for relative rates
across characters, in which a single addi-
tional shape parameter is estimated from the
data.

AN EXAMPLE

A recent paper by Quicke and Belshaw
(1999) examined incongruence within a
dataset based on the morphology of parasitic
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wasps in the family Braconidae (Hy-
menoptera). Much of the incongruence
within this dataset appears to be the re-
sult of convergence in morphology associ-
ated with the endoparasitic lifestyle of many
of the wasps in this family. Excluding all
characters except those related to the fe-
male reproductive system and larval devel-
opment (their FEMALE C LARVAL character
set), Quicke and Belshaw’s parsimony anal-
yses suggested a single origin of endopar-
asitism in the Braconidae, and even placed
an endoparasitoid outgroup taxon Alomya
among the endoparasitoid braconids. The
parsimony analysis was repeated by using

FIGURE 2. Parsimony and likelihood results for the parasitic wasp data (FL/EM characters only) of Quicke
and Belshaw (1999). (a) Strict consensus of 24,620 most-parsimonious trees (128 steps). (b) The single maximum
likelihood tree under the Mkv model (ln L D ¡472.98025).

PAUP¤ 4b3 (Swofford, 2001) to obtain the
24,620 most-parsimonious trees at 128 steps.
The strict consensus tree from this analysis is
shown in Figure 2A. The log-likelihoods of
these trees under the basic Mkv model (i.e.,
conditioning on characters being variable but
without the other possible extensions such as
rate heterogeneity or frequency heterogene-
ity) ranged from ¡478.68557 to ¡484.39209.
None of the most-parsimonious trees was
equivalent to the ML tree under the Mkv
model (Fig. 2B), for which the log-likelihood
was ¡472.98025. The ML tree is thus 5.7 log-
likelihood units better than any of the most-
parsimonious trees, and its 135 steps are
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7 steps longer than the most-parsimonious
trees. This points out that the Mkv model, un-
like either the Goldman (1990) model or the
Tuf�ey and Steel (1997) model, is not equiv-
alent to parsimony in its choice of trees. In-
terestingly, the ML tree places the outgroup
Alomya outside all of the ingroup taxa, which
is the position it occupies when molecular
data or all of the morphological data, or both,
are used. Although the ML tree for just the
FEMALE C LARVAL characters does not co-
incide in all respects to the molecular or full
morphological trees, it does appear to cor-
rect the most egregious problem involving
the placement of Alomya.

DISCUSSION

Adaptive Convergence and the
Autapomorphy Trail

The likelihood criterion differs from par-
simony in that all characters are used to es-
timate branch lengths (another way of say-
ing that branch lengths are structural, not
incidental, parameters), which in turn are
used in calculating the overall score by which
different tree topologies are compared.
Autapomorphies are phylogenetically infor-
mative under the Mk model because they
provide information about the amount of
evolution that has occurred along termi-
nal lineages; this, in turn, in�uences the es-
timated lengths of terminal branches and,
ultimately, the overall likelihood used to
compare a tree to other trees. In parsi-
mony, each character contributes a certain
number of steps (the character length) to
the overall tree length, and the number of
steps contributed is totally independent of
all other characters. Under the likelihood
criterion, each character contributes (as in
parsimony) a value that is added to the con-
tributions of other characters to form the
overall log-likelihood score, which is the like-
lihood equivalent of the tree length in par-
simony. In likelihood, however, the actual
value contributed by a character depends to
some extent on information contributed by
all characters. One might argue, however,
that there is no logical reason (at least within
the context of morphological evolution) for
allowing all characters to in�uence, through
their effect on branch length estimation, the
interpretation of all other characters and
hence the tree topology preferred.

A simple example can be used to illustrate
a situation in which this connection between
characters is reasonable. Suppose two lin-
eages (those leading to taxon W and taxon Y)
have independently adapted to the same set
of environmental conditions, resulting in one
instance of convergence (or mistaken homol-
ogy; character 2) and numerous autapomor-
phies (the changes involved in the separate
adaptations that were not similar enough to
be confused as synapomorphies linking W
and Y). On the tree (Fig. 3) are shown two
parsimony-informative characters (1 and 2)
and �ve autapomorphous characters (3–7).
Assuming that the tree shown, (W,X,(Y,Z)),
is indeed the true topology, character 1 is
the only true synapomorphic character and
character 2 is homoplasious. Both likelihood
and parsimony would agree on this outcome
if this tree is assumed; because parsimony
only allows the use of the two “informative”
characters, however, it has no basis for rec-
ommending this tree over (W,Y,(X,Z)), which
makes character 2 the synapomorphy. Both
of these trees require three steps automor-
phies ignored with the third possible tree

FIGURE 3. Unrooted phylogenetic tree showing the
true evolutionary relationships among four taxa: W, X,
Y, and Z. Two parsimony-informative characters (1 and
2) are mapped onto the tree and in italics. The charac-
ter 2 is homoplasious on this tree, being the result of
convergent evolution in both taxon W and taxon Y. Five
autapomorphies are also mapped onto the tree. See the
text for details of the example.
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(W,Z,(X,Y)) requiring four steps, and thus
parsimony is equivocal. From the perspec-
tive of likelihood, however, the autapomor-
phies are also informative, indicating that
the lineages leading to taxon W and taxon
Y both represent long branches (branches
on which evolutionary change was more
common than on other, shorter branches).
Accordingly, likelihood would give more
weight to explanations (of the similarity be-
tween taxon W and Y) based on convergence
than to purely historical explanations and
thus would prefer the tree that forces charac-
ter 2 to evolve twice independently, whereas
character 1 evolves only once.

In this case, likelihood is able to correctly
choose which of two con�icting parsimony-
informative characters is the homoplasious
one, on the basis of evidence coming en-
tirely from autapomorphies. This example is
relevant because separate adaptation events
leading to convergent similarities might be
expected to leave behind just such a trail of
autapomorphies pointing out the lineages in-
volved. Parsimony does not take advantage
of this evidence because autapomorphies
are phylogenetically uninformative under
the parsimony criterion. Likelihood using
the Mk model has the ability to correctly
diagnose this situation, given that the au-
tapomorphies were included in the data ma-
trix (unfortunately, autapomorphies are rou-
tinely omitted from morphological data sets,
making comparisons of likelihood and par-
simony dif�cult at present). Homoplasy, of
course, has many different causes (see dis-
cussions by many authors in Sanderson and
Hufford, 1996), of which adaptive conver-
gence is only one. This suggests that care-
ful scrutiny of all the causal factors leading
to homoplasy is in order, paying attention to
whether involvement of branch length esti-
mates in the evaluation of individual charac-
ters aids or hinders the identi�cation of such
homoplasies. This would seem to be an area
ripe for future study.

Advantages of a Likelihood Approach

Combining morphological data with
molecular data, using the Mk model for the
morphological data and a different model
for the molecular data, involves straight-
forward addition of the log-likelihoods
resulting from the separate data parti-
tions. Other advantages involve ancestral

state reconstruction, the ability to utilize
likelihood ratio tests, and the ability to
obtain Bayesian posterior probabilities for
hypotheses involving morphology.

Ancestral state reconstruction.—There has
been interest for some time in modeling
discrete morphological data, but heretofore
models have been applied to inferences con-
cerning character correlation (Pagel, 1994)
or ancestral state reconstruction (Maddison,
1995; Schlutz et al., 1996; Schluter et al., 1997;
Mooers and Schluter, 1999; Pagel, 1999) and
not to phylogeny reconstruction per se. Pagel
(1994) used a model identical to the un-
equal rates version of M2 in his likelihood
ratio test for correlated evolution between
two binary morphological characters. Pagel’s
method does not involve using this model for
phylogeny reconstruction; rather, hismethod
assumes a given tree topology and branch
lengths, with the model being applied only to
the two characters of interest. Pagel’s method
does not compute likelihoods conditional on
variable characters, but that was not nec-
essary because branch lengths were speci-
�ed, not estimated. Maddison (1995) con-
sidered stochastic models in the context of
assessing the reliability of parsimony re-
constructions. The model he used was es-
sentially Goldman’s parsimony model (G90)
because homogeneity of branch lengths was
assumed. Maddison’s purpose was the cal-
culation not of a likelihood but of the prob-
ability that the ancestral states inferred by
standard parsimony were the true ancestral
states. Schultz et al. (1996) reexamined the
issue of reliability (raised by Frumhoff and
Reeve, 1994) of the state inferred to be pos-
sessed by the common ancestor of a clade of
a speci�ed size. In this study, monomorphic
(all tip nodes have the same observed state)
terminal polytomies of size N were consid-
ered and the question addressed was, “How
large does N need to be for it to be safe to as-
sume that the ancestral state (at the root node
of the polytomy) is identical to the states pos-
sessed by all the N tips?” The model used by
Schultz et al. was identical to the model of
Pagel (1994). Schluter et al. (1997) used like-
lihood methods to estimate ancestral states,
comparing these with parsimony reconstruc-
tions for several examples. The model for dis-
crete characters used was again identical to
that used by Pagel (1994) and, as in Pagel’s
method, Schulter et al. assumed both topol-
ogy and branch lengths a priori. Recently,
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Mooers and Schulter (1999) and Pagel (1999)
reexamined some of these issues as part of a
symposium on ancestral state reconstruction.

All of these model-based approaches
to morphological evolution allow branch
lengths to play a signi�cant role in the in-
ferences made; however, none of them es-
timates branch lengths from the data col-
lected. This paper thus presents a different,
but complementary, use for models in stud-
ies of morphological character evolution. Of-
ten, branch lengths used in conjunction with
Pagel’s (1994) test or for making inferences
concerning ancestral states are obtained by
using molecular data, which might be quite
inappropriate for morphological data. For
example, adaptive radiations are character-
ized by a considerable amount of morpho-
logical evolution during a short (on a molec-
ular scale) amount of time, leading to short
branch length estimates from molecular data
when morphological branch lengths are ac-
tually long. Using the Mk model for phy-
logeny reconstruction provides not only the
topology needed for studies of character evo-
lution and correlation but also the branch
lengths that are appropriate for the suite of
characters being investigated.

Likelihood ratio tests.—Model-based mor-
phological phylogenetics opens up tremen-
dous potential for testing explicit evolution-
ary hypotheses of morphological character
evolution. Likelihood ratio tests have proven
extremely useful in molecular phylogenet-
ics (Huelsenbeck and Rannala, 1997), and
similar successes can presumably also be
achieved for morphological phylogenetics. A
likelihood ratio test has already been formu-
lated for the question, “Are these two charac-
ters correlated in their evolution such that the
second tends to evolve from state 0 to state
1 following a similar change in the �rst char-
acter?” (Pagel, 1994). Likelihood ratio tests
could also be applied to such questions as,
“Are the forward and reverse rates of change
signi�cantly different for this character?” or
“Is the species tree obtained using morpho-
logical data signi�cantly different from the
gene tree obtained using DNA sequences?”
(see Huelsenbeck and Bull, 1996). This latter
question could be addressed by comparing
the log-likelihoods under two models: a con-
strained model in which the same tree topol-
ogy is assumed for both morphological and
sequence data, and an unconstrained model
in which potentially different tree topologies

are allowed for the two different data types.
This provides an explicit means of testing
whether the species tree differs from the gene
tree.

Bayesian inference.—Recent advances in the
application of Bayesian inference methods
to phylogenetic analyses (Rannala and Yang,
1996; Yang and Rannala, 1997; Larget and
Simon, 1999) are equally applicable to
discrete morphological data because the
likelihood function forms the foundation
of Bayesian inference. Whereas likelihood
methods seek to �nd the tree (and branch
lengths) maximizing the probability of the
observed data, Bayesian methods return the
posterior probability, that is, the probabil-
ity of the tree conditional on the observed
data and the prior probability (the exist-
ing approaches specify equal prior probabil-
ities for all possible trees). As illustrated by
Larget and Simon (1999), Bayesian posterior
probabilities can be obtained for individual
branches in a tree in much less time than it
would take to obtain bootstrap proportions
by using a standard likelihood approach.
Interesting applications of the Bayesian ap-
proach to questions involving morphology
have already been published (Huelsenbeck,
2000b), and this new approach, because of
its explicit incorporation of prior beliefs, will
make possible novel ways of assessing the
degree to which the data are in opposition to
an investigator’s convictions concerning the
evolution of particular traits.

CONCLUSIONS

This paper has examined the feasibility
of using models for discrete morphological
character data for the purpose of inferring
phylogenies. The necessary models are al-
ready available (and have been in use for
other purposes for many years); bringing
discrete morphological data into the likeli-
hood framework has many advantages, in-
cluding but not limited to the following:

² Providing alternatives to parsimony with
respect to ancestral states, branching pat-
terns, and the degree of homoplasy pre-
sent in the data

² Allowing information on morphology to
be combined in a meaningful way with
sequence data for a combined analysis in
which each distinct data type is modeled
separately and appropriately
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² Allowing testing of explicit evolution-
ary hypotheses of morphological character
evolution by way of likelihood ratio tests

² Providing a basis for using Bayesian meth-
ods for inferring nodal support and mak-
ing inferences about model parameters

The availability of likelihood ratio tests
and the ability to apply Bayesian approaches
increase the value of discrete morphological
data in addressing phylogenetic questions.
Besides being useful to systematists them-
selves, a likelihood model for morphology
has the potential to greatly increase the use-
fulness of systematic work in other, related
sub�elds of biology.

PROGRAM AVAILABILITY

The Mkv model has been incorporated into
the widely used computer program PAUP¤

4.0 (beta version 9; Swofford, 2001).
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