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Faith (1999) regarded Kluge’s (1997) and
Carpenter et al.’s (1998) discussions of cor-
roboration as examples of “sloganized
Popper.” That was as distinguished from
“Popper¤,” which included (Faith, 1999:676;
as throughout, italics are as in the original):

. . . the explicit Popperian severity/corroboration
framework underlying the permutation tail probabil-
ity test (PTP) and related tests. The stated degree of
corroboration/severity for a PTP test of a phyloge-
netic hypothesis is equated with the degree of im-
probability, equal to the P value in evaluating a null
model based on random character covariation . . .

PTP is just Faith’s name for the permuta-
tion test that Archie introduced in 1985 (see
Legendre, 1986:137; cf. Archie, 1989). Now
seldom used, the test does not even provide a
reliable indication of phylogenetic structure
in data (Källersjö et al., 1992; Farris et al.,
1994; Carpenter et al., 1998), and interpret-
ing PTP as corroboration leads to multiple
contradictions (Farris, 1995). Faith did not
discuss any of those problems, however. In-
stead, he created a new one (Faith, 1999:678):

Whereas a sloganized Popper has provided an exclu-
sive philosophy, twisting and turning to uniquely jus-
tify cladistic parsimony, Popper¤ is relevant to phylo-
genetic analyses using parsimony and other methods.

That is not correct, for what Faith pre-
sented as a criticism of “sloganized Popper”
is actually an objection to likelihood. The
premises of Faith’s “Popper¤” are incon-
sistent with a likelihood approach, as we
will show here by analyzing the connection
between likelihood and corroboration. This
cannot be blamed on Popper (1968, 1972,
1992), however, because each point of con-

�ict between “Popper¤” and likelihood cor-
responds to a difference between “Popper¤”
and Popper.

LIKELIHOOD

We begin by examining the relationship
between likelihood and Popper’s formulae
for severity (strength of evidence) and cor-
roboration. Popper (1972:391; as throughout,
italics are as in the original) de�ned:

. . . the severity of the test e interpreted as supporting
evidence of the theory h, given the background know-
ledge b [as]:

S(e ,h,b) D ((p(e ,hb) ¡ p(e ,b))=(p(e,hb)

C p(e,b))

Popper (1968:400f) also called this quantity
explanatory power E . Here p(e,b) denotes
the probability of e given b, while p(e, hb) is
the probability of e given both h and b. For a
phylogenetic likelihood method, h would be
a postulated phylogenetic tree, while e would
be a matrix of character (sequence) data.
Background knowledge b includes accepted
(well-corroborated) theories that help guide
the interpretation of e as evidence on h. Kluge
(1997), for example, included descent with
modi�cation in background knowledge. In
likelihood methods the stochastic evolu-
tionary model is included in b (see Kluge,
1997).

Popper’s (1992:240; cf. Popper, 1972:288,
1968:400f) formula for corroboration is al-
most the same, differing only in having an
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additional term p(eh,b) in the denominator:

C(h,e,b) D
p(e,hb) ¡ p(e,b)

p(e ,hb) ¡ p(eh,b) C p(e ,b)

The difference can be ignored for present
purposes, because p(eh, b) is close to 0 for
hypotheses with high content (Popper,
1968:401), a category that would surely in-
clude phylogenetic hypotheses. This is just
as well, since Faith has never mentioned
p(eh,b).

The connection between C (or S, or E) and
likelihood becomes clear on considering
which tree h would be best corroborated on
the basis of currently available information.
For given e and b, p(e,b) would have some
set value, so that corroboration C (h,e ,b) for
different trees h would vary just according
to the other term p(e ,hb), and as is easily
seen from the formula, the trees with great-
est p(e,hb) would have strongest corrobora-
tion C . But those same trees would also be
the maximum likelihood trees, for as Popper
(1968:410) pointed out, p(e,hb) is the likeli-
hood of h given evidence e and background
knowledge b.

Likelihood does not always correspond so
directly to corroboration. As Popper (1968)
emphasized, any evidence e with high
p(e ,hb) automatically makes likelihood high,
whereas corroboration is strong only for crit-
ical evidence (severe tests), that is, when
p(e ,hb) is much larger than p(e,b). But this
consideration arises only when assessments
based on different evidence or backgrounds
are compared. For given evidence and back-
ground, the hypotheses h with the greatest
likelihood p(e ,hb) also have the strongest
corroboration C(h,e,b).

p(e,hb) is thus an important part of
Popper’s corroboration, but one would not
know that from Faith’s discussion. Faith
mentioned the likelihood p(e,hb) only in
passing, and then only to suggest that it can
be effectively ignored, because it is merely set
to 1 (Faith, 1999:678; notice that Faith always
dropped the italics from Popper’s p):

That [idea of Mayo’s (1996)] can be expressed as a
high p(e,hb) [sic]—the probability of e given h and
b—a likelihood term also used in Popper’s equations
for severity corroboration (but usually set equal to 1).

That would be disastrous for maximum
likelihood. Likelihood can be used to se-

lect among trees h only if the likelihood
p(e,hb) varies among trees, yet Faith treated
p(e,hb) as if it were �xed. Faith’s “Popper¤”
would prevent application of the likelihood
principle.

But that dif�culty comes just from
“Popper¤,” not Popper. Popper had no inten-
tion of keeping p(e,hb) �xed at 1, but meant
p(e,hb) to vary. To be sure, p(e ,hb) may be
high for evidence e that strongly favors hy-
pothesis h (Popper, 1992:238):

This leads us at once to realize that the smaller p(e,b),
the stronger will be the support which e renders to
h—provided our �rst demand is satis�ed, that is, pro-
vided e follows from h and b, or from h in the presence
of b.

Under that provision, p(e,hb) would be 1,
but p(e,hb) is instead low for evidence
that undercuts the hypothesis, as Popper
(1992:242) went on to emphasize:

[But] what about an empirical evidence e which falsi-
�es h in the presence of b? Such an e will make p(e,hb)
equal to zero.

“Popper¤” seems to be based on simply
ignoring the latter possibility, for Faith
(1999:677) quoted the �rst of those passages
himself, yet never mentioned the second, al-
though it is part of the same discussion.

POINT PROBABILITIES

Rather than being based on Popper’s dis-
cussion, treating the likelihood p(e ,hb) as if
it were �xed was required by another part of
Faith’s own position. Faith identi�ed PTP—
the signi�cance level or tail probability from
the PTP test—with Popper’s p(e,b), so that
he had to treat p(e,hb) as �xed to conclude
that PTP would determine corroboration.

Of course that provides no legitimate
grounds for �xing p(e,hb), but further,
Faith’s identi�cation of PTP with p(e,b)
leads in itself to another incompatibility be-
tween “Popper¤” and likelihood methods.
Because PTP is a cumulative probability,
equating PTP with p(e,b) would mean that
p(e,b) must also be a cumulative probabil-
ity; if so, then p(e ,hb) would have to be
a cumulative probability as well, because
p(e,hb) differs from p(e ,b) only in the added
condition h. Yet p(e,hb) cannot be a cu-
mulative probability, for it is a likelihood.
Maximum likelihood estimation procedures
always maximize point probabilities or den-
sities (see Lindgren, 1962), not cumulative
probabilities.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/50/3/438/1661254 by guest on 20 M

arch 2024



440 SYSTEMATIC BIOLOGY VOL. 50

Again, the con�ict with likelihood comes
from ’Popper¤,” not Popper, for Popper used
point probabilities. This is seen, for exam-
ple, in his discussion of statistical hypothe-
ses. Unfortunately, Popper did not use quite
the same notation here as in the formulae
seen earlier. Probability is written P , and
b indicates a population, not background
knowledge, the latter not being explicitly de-
noted. Thus P(a ,b) means the probability of
property a in population b, while P(e) corre-
sponds to the p(e,b) of the formulae above,
and P(e,h) corresponds to (e ,hb). With all
this in mind, the expression P(e,h) ¡ P(e),
connected with C and E near the end of
the passage, is readily recognized as the
numerator of C and S (D E) in the formulae
�rst quoted. Popper (1968:410f) commented:

Now let h be the statement P(a,b) D r and let e be the
statement ‘In a sample which has size n and which
satis�es the condition b (or which is taken at random
from the population b), a is satis�ed in n(r § ±) of the
instances’. Then we may put, especially for small val-
ues of ±, P(e) »D 2±. We may even put P(e) D 2±; for
this would mean that we assign equal probabilities—
and therefore, the probabilities 1=(n C 1)—to each of
the n C 1 proportions, 0=n, 1=n, : : : n=n, with which
a property a may occur in a sample of size n : : : (The
equidistribution here described is . . . adequate for as-
sessing the absolute probability, P(e), if e is a sta-
tistical report about a sample. But . . . for assessing
relative probability P(e,h) of the same report : : : in
this case, it is adequate to assume a combinatoric,
i.e., a Bernoullian rather than a Laplacean distribu-
tion.) . . . Wetherefore�nd that P(e,h) ¡ P(e), and thus
our functions E and C , can only be large if ± is small
and n large; or in other words if e is a statistical report
asserting a good �t in a large sample.

P(e,h) is thus the Bernoullian (binomial)
probability of obtaining so many a ’s with
sample size n and parametric frequency r .
That is a point, not a cumulative, probability
and the same is obviously true of the discrete
uniform distribution P(e) D 2± D 1=(n C 1).
Faith’s use of cumulative probabilities is
not based on Popper’s ideas, but only on
Faith’s own.

FIT

A further con�ict between “Popper¤” and
likelihood arises from the seemingly inno-
cent fact that the PTP test uses the length
of the most-parsimonious tree or trees for
the data as a test statistic. The cumulative
probability PTP, which Faith identi�ed with
Popper ’s p(e ,b), is obtained from a null dis-
tribution of such lengths. Faith regarded that
length as a measure of the �t of the data to

the tree, and accordingly he maintained that
e should refer to �t, not data (Faith, 1999:676):

In the introductory quote from Mayo [(1996)] above,
note that e refers to the data, whereas Popper uses e
for the evidence, corresponding to what Mayo refers
to as “�t” of data to hypothesis.

On Faith’s view, then, p(e,b) and p(e,hb)
would be not just cumulative probabilities
but cumulative probabilities from distribu-
tions on degrees of �t. But in that case
p(e,hb) would not be suitable for a likelihood
method, because estimating maximum like-
lihood works by choosing the hypothesis to
maximize the probability of the data given the
hypothesis.

Once more the dif�culty comes from
“Popper¤,” not Popper, although this time
it is not hard to see how a super�cial read-
ing could have led Faith to his position. In
the discussion of property a quoted above,
for example, Popper (1968:411) noted that
strong corroboration can be achieved only
“if e is a statistical report asserting a good �t
in a large sample.” That might seem to sug-
gest that P(e) and P(e,h) are distributions on
some measure of �t, but this possible con-
fusion disappears when the example is con-
sidered further. Popper’s P(e) and P(e ,h) are
simply distributions on the number of a ’s in
a sample of n independent observations, not
on any variable that could be regarded as a
measure of �t. Identifying evidence with �t,
in fact, directly violates a rule that Popper
(1972:288) discussed while emphasizing the
importance of avoiding ad hoc hypotheses:

My [formula for corroboration] does not automati-
cally exclude ad hoc hypotheses, but it can be shown
to give most reasonable results if combined with a
rule excluding ad hoc hypotheses . . . [This rule] may
take the following form: the hypothesis must not re-
peat . . . the evidence or any conjunctive component
of it.

If the “evidence” were �t, and so calculated
from the hypothesis as well as the data, then
the hypothesis would ipso facto repeat a
conjunctive component of the “evidence,”
namely, itself. That is just the situation that
must be avoided if “most reasonable results”
are to be obtained.

How unreasonable results could become
if evidence were identi�ed with �t can best
be appreciated from some examples. For
brevity, use x to denote the number of a ’s
observed in a random sample of n inde-
pendent observations. Let the hypothesis in
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question be that r D 1=2, and suppose that
n D 1,000. The observed count of a ’s that
would most strongly favor the hypothesis is
x D 500, for which the binomial probability
P(e,h) is »0.025225. For n D 1,000, Popper’s
P(e) D 1=(n C 1) is 1=1,001. In present nota-
tion, Popper’s (1968:400f) S (there called E)
is just

S(e ,h) D (P(e,h) ¡ P(e))=(P(e ,h) C P(e))

which in this case is

(0:025225 ¡ 1=1,001)=(0:025225 C 1=1,001)

D 0:9238:

Positive S indicates that the evidence fa-
vors the hypothesis (Popper, 1968:400f; cf.
Popper, 1992:241), quite strongly in this ex-
ample, given that the upper bound of S is C1.
S should approach its upper bound when the
evidence is ideally favorable and extensive,
and in this case keeping x D n=2 as n is in-
creased causes S to approach C1 in the limit,
just as one would like.

Suppose, on theother hand, that x D n D 1.
Now P(e) D 1=(n C 1) D 1=2, while binomial
P(e,h) is also 1=2, so that S D (1=2 ¡ 1=2)=(1=2 C
1=2) D 0. S D 0 indicates irrelevance of the ev-
idence to the hypothesis (Popper, 1968:400f) ,
and this is obviously correct. x D n D 1 is not
enough data to provide grounds for evaluat-
ing the hypothesis that r D 1=2.

Finally, return to n D 1,000 and suppose
that x D 1,000, a count most unfavorable to
the hypothesis that r D 1=2. P(e), which de-
pends only on n, is 1=1, 001, but the bino-
mial probability P(e,h) is now 2¡1,000 (»9.33
£10¡302), so that S is

(2¡1,000 ¡ 1=1,001)=(2¡1,000 C 1=1,001) »D ¡1:

Negative S indicates that the evidence refutes
the hypothesis, emphatically in this case, be-
cause ¡1 is the lower bound of S (Popper,
1968:400f).

That is also just as one would like, because
with those data a two-tailed exact binomial
test—which is a likelihood ratio test—would
reject the hypothesis that r D 1=2 at a signif-
icance level of » 1:9 £ 10¡301 . This satisfac-
tory behavior of S, however, depends on us-
ing the probabilities that Popper intended.

According to Faith, one should instead use
cumulative probabilities of �t, and this leads
to quite different results.

Write f for a measure of �t of the count x
to the hypothesis h, and K ( f ) and K ( f ,h) for
cumulative probability distributions on f .
With K used in place of P, “severity” would
be

SK ( f ,h) D (K ( f ,h) ¡ K ( f ))=(K ( f ,h) C K ( f )):

Note that what Faith called “�t” is actually
the opposite: Small values mean that the data
conform to the hypothesis. That being un-
derstood, for the hypothesis that r D 1=2 and
sample size n D 1,000, f should reach its
maximum (worst) possible value f ¤ when
x D 1,000. Because f ¤ is the maximum of
f , the cumulative probabilities K ( f ¤) and
K ( f ¤, h) must be unity, so that

SK ( f ¤, h) D (1 ¡ 1)=(1 C 1) D 0:

S D 0, as seen earlier, indicates that the ev-
idence is irrelevant to the hypothesis, so
that misinterpreting SK as Popper’s S makes
the observation x D n D 1,000 seem irrele-
vant to evaluating the hypothesis that r D
1=2. Using cumulative probabilities of �t in-
stead of point probabilities of observations
in “Popper’s” formulae has the thoroughly
unreasonable result of making it impossible
to identify even very strong evidence as un-
favorable to a hypothesis.

DEPENDENCE

Faith’s objection to “sloganized Popper”
was based on his idea that “evidence” meant
�t. Because in that case e would depend on h,
he supposed p(e ,b) would also depend on h.
Accordingly, he criticized other authors for
taking “only properties of the data” as evi-
dence and for failing to treat p(e,b) as if it
depended on h (Faith, 1999:678):

: : : recastings of Popperian corroboration, while
explicitly considering the terms, p(e,hb) [sic] and
p(e,b) [sic], actually assign p(e,b) [sic] no role. For
example,

the best supported hypotheses are those that assign
highest probability to the evidence. Only p(e,hb)
[sic] can perform this role; the other term p(e,b)
[sic] does not involve h. (Carpenter et al., 1998:107)
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Similarly: : : [in Kluge (1997)] ”evidence,” e re�ects
only the properties of the data itself, implying that all
tree hypotheses have the same value for p(e,b) [sic]. So
this term again plays no role in determining relative
corroboration/severity for different tree hypotheses.

The role of p(e,b), as Kluge (1997) stressed,
and as was pointed out earlier, is to dis-
tinguish critical from non-critical evidence.
But it is the likelihood p(e,hb)—not p(e,b)—
that determines the relative corroboration of
different trees h for the same evidence and
background. Faith’s complaint is actually an
objection to likelihood, as becomes apparent
when we quote Carpenter et al.’s (1998:107;
underlining added) comments a little more
fully than Faith did:

[Faith] missed the point of Popper’s formula. The
function of the term p(e,hb) is to relate the hypothesis
h to the evidence e. As with the likelihood principle,
the best-supported hypotheses are those that assign
highest probability to the evidence. Only p(e,hb) can
perform this role; the other term p(e,b) does not in-
volve h. By pretending that p(e,hb) could be frozen at
unity “so that the �rst term can be ignored,” Faith
(1992:266) arrived at a formulation that would ab-
surdly make the “corroboration of h” independent
of h.

If, as Faith maintained, p(e,b)—not
p(e,hb)—varied among trees h, maximum
likelihood estimation would be exactly the
wrong approach. Maximum likelihood uses
only the likelihood p(e,hb), ignoring any
information on h contained in p(e,b). But in
fact there is no such information, because
Popper ’s p(e ,b) does not depend on h. This
is plain from Popper’s property a example,
discussed earlier. There, Faith’s claim would
mean that P(e) would depend on h, whereas
in fact Popper’s P(e) D 1=(n C 1) depends
only on the sample size n, not on the hypoth-
esis, which is the value of r . This supposed
fault of “sloganized Popper” is just another
case in which con�ict between likelihood
and “Popper¤” re�ects a difference between
“Popper¤” and Popper.

RELEVANCE

An even worse dif�culty stems from the
permutation (randomization) null model
Y used in the PTP test. Under that model,
characters are distributed randomly among
taxa and are completely independent of the
phylogeny. To identify PTP with Popper’s
p(e,b), Faith had to identify the background
knowledge b with Y, and this choice of

background is not bene�cial to likelihood
methods.

To see why that is so, consider the likeli-
hood p(e,hY) for data e and some given tree
h with Y used in place of the background
b. According to Y, e is independent of h.
In that case, making the probability condi-
tional on h would not change the distribu-
tion of e, so that p(e,h Y) D p(e ,Y). But the
same would be true for any tree, so that all
trees would have the same likelihood, and
the data would never provide grounds for
choosing one tree over another. Similarly,

S(e ,h,Y) D (p(e,hY) ¡ p(e,Y))=(p(e,hY)

Cp(e,Y)) D (p(e,Y) ¡ p(e,Y))=2p(e ,Y)

D 0

would hold for any tree. Faith’s choice
of background would make the data—any
data—irrelevant to inferring phylogeny.

To be sure, Faith meant to use �t in place
of e , but that would do no good. If f is a
measure of �t of data e to a given tree hy-
pothesis h, f is a set function of the data,
so that p( f ,h Y) and p( f ,Y) can naturally be
computed from the corresponding distribu-
tions p(e,h Y) and p(e,Y) on the data. Then,
because p(e,h Y) is the same distribution as
p(e,Y), p( f ,h Y) D p( f ,Y), in which case the
corresponding cumulative distributions are
obviously the same as well: K(f,hY) = K(f,Y).
Consequently, using cumulative probabili-
ties of �t, as Faith would like, the “corrob-
oration” of h would be

SK ( f ,h,Y) D (K ( f ,hY) ¡ K ( f ,Y))=(K ( f ,h Y)

C K ( f ,Y)) D (K ( f ,Y) ¡ K ( f ,Y))=

2K ( f ,Y) D 0

for any tree h and any data. With Y used in
place of b, there would never be grounds for
preferring one tree over another.

Faith might not calculate SK ( f ,h,Y) that
way. Because he treated Popper’s p(e ,hb) as
if it were �xed at 1, he would presumably
treat K ( f ,h Y) likewise, and this would mask
the symptom that SK ( f ,h,Y) ´ 0. But there
is no justi�cation for treating K ( f ,h Y) as if
it were �xed at 1, and in any case, shifting
the value of SK ( f ,h,Y) would not dispose of
the underlying fault of Faith’s position, that
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with Y used in place of b, the data convey no
information about h.

Like the other aspects of “Popper¤” that
con�ict with likelihood, the choice of Y as
“background” is Faith’s, not Popper’s, but
this point requires no further attention here,
for it has been discussed in detail by Far-
ris (1995, 2000). The behavior of SK ( f ,h,Y) is
of further interest, however, because it pro-
vides an informative perspective on Faith’s
(1999:678) concluding remarks:

Whereas a sloganized Popper has provided an exclu-
sive philosophy, twisting and turning to uniquely jus-
tify cladistic parsimony, Popper¤ is relevant to phylo-
genetic analyses using parsimony and other methods.

By that he meant, in present notation,
that �t criteria used in other methods—
clique size, cophenetic correlation, even the
likelihood score under (say) a Jukes–Cantor
model—could be used as the f in K ( f ,Y).
Faith believed that such calculations would
provide a useful assessment of corrobora-
tion, but in that, his reasoning consisted sim-
ply of ignoring dif�culties. He departed from
Popper both in using probabilities of �t and
in using cumulative probabilities, but even if
those discrepancies could be overlooked, the
conclusion that SK ( f ,h,Y) ´ 0 for any tree
and data holds for any of those �t measures.
If Y were used in place of b, no tree could ever
be“corroborated,” no matter whatmethod or
data used.

PARSIMONY

Faith’s (1999:678) concluding remarks also
involved twisting and turning. Although he
did not expand on this, he seems to have
felt that there was some dif�culty in relating
parsimony to corroboration. Apparently he
was unaware of Tuf�ey and Steel’s (1997:599)
Theorem 5:

THEOREM 5. Maximum parsimony and maximum like-
lihood with no common mechanism are equivalent in the
sense that both choose the same tree or trees.

Because the maximum likelihood trees are
also the best-corroborated trees for the given
evidence and background, one can imme-
diately see that parsimony maximizes cor-
roboration when no common mechanism
is included in the background knowledge.
Inasmuch as Popper’s explanatory power E
has the same formula as S, this also means
that the most-parsimonious trees have the

greatest explanatory power, in agreement
with Farris’ (1983) conclusion that most-
parsimonious trees can best explain observed
similarities as the result of inheritance and
common ancestry.

Of course any maximum likehood method
would maximize corroboration for the given
evidence, if the stochastic model used were
included in the background knowledge. But
only well-corroborated theories can legiti-
mately be included in the background, and
the importance of Tuf�ey and Steel’s result
is that it relies on a defensible model. Nearly
all the systematic methods now called maxi-
mum likelihood (for a review see Siddall and
Whiting, 1999) are based onrestrictive homo-
geneity assumptions: that all sites have sub-
stitution rates drawn from the same distribu-
tion, and that the ratio in rates between any
two sites is the same in all parts of the tree (see
Farris, 1999). Because those assumptions are
known to be unrealistic, they are de�nitely
not well-corroborated theories. The no com-
mon mechanism avoids that dif�culty be-
cause it allows (but does not require) sites
to vary independently in their rates.

Parsimony thus has a clear and eminently
useful connection to corroboration. In that, if
differs markedly from “Popper¤.”
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FARRIS, J. S., M. KÄLLERSJÖ, A. G. KLUGE, AND C. BULT.
1994. Permutations. Cladistics 10:65–76.
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The phylogenetic position of Cetacea
within the mammalian tree has long been
a subject of debate. The traditional pale-
ontological view is that an extinct order
of mammals, the Mesonychia, is the sis-
ter taxon to Cetacea (e.g., Van Valen, 1966;
Prothero et al., 1988). This view has recently
been supported by morphological studies
that examined both fossil and extant ma-
terial (Geisler and Luo, 1998; O’Leary and
Geisler, 1999). The molecular evidence, by
contrast, supports a phylogenetic hypothesis
in which Cetacea is nested deeply within the
Artiodactyla, implying that Artiodactyla is
paraphyletic with respect to Cetacea (Sarich,
1985; Milinkovitch et al., 1993; Gatesy et al.,
1999, and references therein). Furthermore,
several molecular studies have suggested
that hippopotamids are the sister taxon
to Cetacea (e.g., Irwin and Arnason, 1994;
Gatesy et al., 1996; Gatesy, 1997, 1998;
Montgelard et al., 1997; Nikaido et al., 1999).
Although the “return to water” aspect of
this phylogenetic hypothesis has a certain
intuitive appeal, it has met with resistance
from those who work primarily with mor-
phology (e.g., Geisler and Luo, 1998; O’Leary
and Geisler, 1999; O’Leary, 1999). Despite the
resurgent interest in the problem, no consen-
sus reconciling the different signals has yet
been reached.

Obviously, a serious limitation of molec-
ular data is that this information cannot be
gathered from the fossil remains of extinct
taxa. In contrast, fossils can play an impor-
tant role in recovering phylogeny in morpho-
logical studies, often providing information
about character states of stem lineages that
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are not present in extant taxa. In some cases,
the inclusion of fossils can even overturn in-
ferences based solely on extant character dis-
tributions (e.g., Gauthier et al., 1988; Eernisse
and Kluge, 1993). Because molecular data
sets, by their very nature, can include only ex-
tant taxa, biased taxon sampling could possi-
bly lead to incorrect phylogenetic inferences.

Recently, O’Leary and Geisler (1999) pre-
sented a phylogenetic analysis of morpho-
logical data from both fossil and extant
mammals. Using a combined data set of
characters from basicranial, cranial, den-
tal, postcranial, and soft tissue regions,
they found evidence supporting the mono-
phyly of Cetacea, Mesonychia, Artiodactyla,
and Perissodactyla. Their data also sup-
ported a sister-group relationship between
Mesonychia and Cetacea, af�rming the tra-
ditional paleontological view (Fig. 1). Inter-
estingly, when fossils were excluded from
the data, O’Leary and Geisler found that
the phylogenetic signal present in the ex-
tant taxa was similar to that seen for the
molecular data, that is, with Cetacea deeply
nested within Artiodactyla. This pattern lead
them to propose that phylogenies based on
extant data alone might be predisposed to
recover inconsistent branches as a result of
sparse taxon sampling. If true, this could ex-
plain why phylogenetic inferences based on
molecular data (derived exclusively from ex-
tant taxa) are frequently at odds with infer-
ences from skeletal and dental data derived
from both fossil and extant forms. This is an
interesting hypothesis and one that, if borne
out, would have sobering implications for
molecular systematics—a discipline almost
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