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The number of ways to infer phyloge-
nies is large (Swofford et al., 1996) and get-
ting larger (e.g., Larget and Simon, 1999).
The proliferation of techniques poses a chal-
lenge to phylogeneticists concerned with jus-
ti�cation of these techniques and their rela-
tive performance. Historically, debates over
methodology havecentered onphilosophical
issues (Farris, 1983; Felsenstein, 1983; Sober,
1988; Siddall and Kluge, 1997), many of
which involve unprovable assertions about
the proper way to perform inductive infer-
ence in science (which is better: Ockham’s
razor, or Fisher’s “likelihood principle”?
Sober, 1988; Edwards, 1992; Royall, 1997). In
the lastdecade much of the debate has shifted
over to performance evaluations based on
computer simulations (reviewed in Hillis
et al., 1994; Li, 1997) and studies of “known
phylogenies” (Russo et al., 1996; Naylor and
Brown, 1998; Leitner and Fitch, 1999). How-
ever, little consensus has emerged, except
that a few methods that are not widely used
anyway, such as UPGMA, perform poorly.

One way to classify these methods is by
the degree to which they rely on a parametric
model of theevolutionary process toestimate
the tree. A parametric estimation method has
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an explicit deductive relationship to a family
of sampling distributions characterized by
one or more parameters. Parametric meth-
ods such as maximum likelihood (ML) have
received much attention in phylogenetics
recently because of extensions of models
of molecular evolution in new directions
through the addition of more parameters
(e.g., Tillier and Collins, 1995; Goldman et al.,
1998; Thorne et al., 1998; Huelsenbeck and
Nielsen, 1999). Computational and algorith-
mic advances have contributed to this in-
terest (Rogers and Swofford, 1998; Schadt
et al., 1998), and the publication of PAUP ¤ 4.0
(Swofford, 1999) presents systematists with
an elegant, user-friendly platform to use
parametric methods. This may be an appro-
priate time to take acritical look at likelihood-
based methods in phylogenetic estimation
as one end of an important methodological
spectrum.

Much has been written about the relative
strengths and weaknesses of model-based
methods versus “model-free” methods such
as parsimony. However, most of this has been
concerned with philosophical rather than
statistical arguments (e.g., Farris, 1983; Sober,
1988). Here we raise explicitly statistical
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issues concerned with parametric ML tree
estimation. In particular, the issues of per-
formance of estimators, model selection, and
computational ef�ciency will be discussed.
For each, the argument will be presented that
parametric methods exhibit shortcomings
making questionable their utility relative to
nonparametric methods . We will argue that
estimation is inherently an inductive prob-
lem, even within a model-theoretic frame-
work, and the deductive structure of para-
metric methods does not by itself provide it
an a priori superiority. The focus of discus-
sion is the problem of tree inference itself—
not the problem of inference about evolution-
ary processes on a given tree.

In the following we take a critical look at
ML as an example of a parametric method.
Despite our discussion of weaknesses of
parametric estimation methods, we strongly
agree with Felsenstein (1983) that the sta-
tistical framework is the most useful com-
mon language of discourse for phylogenet-
ics. We do not dispute that ML has its
unique strengths, the main one being its
provision of a prescription for the construc-
tion of reasonable estimators in the con-
text of a particular parametric model of
evolution. It carries with it a set of stan-
dard results and tools that allow systematic
investigation of its properties (even if they
are not always directly applicable)—in con-
trast to, say, maximum parsimony, the prop-
erties of which were until recently poorly
understood except by simulation studies. Fi-
nally, although wediscuss possible failuresof
ML and also discuss maximum parsimony as
a contrast, we do not advocate any particular
alternative. Our only point is that all methods
should be evaluated statistically, under a va-
riety of conditions and realistic models, with
respect to various characteristics, and with-
out a priori assumptions about performance.

PERFORMANCE OF ESTIMATORS

Schadt et al. (1998:222) argued that the sup-
posed superiority of likelihood stems from
its “full” use of the data in comparison with
other methods (e.g., parsimony). An even
more widely held view is that likelihood (and
model-based methods in general) leads to
better inference because it more accurately
models the evolutionary process (particu-
larly by accounting for multiple hits) than
does simple parsimony (Sidow, 1994:26).

These and similar claims should be evalu-
ated in a common statistical framework. Sta-
tistical estimators are generally judged by the
criteria of consistency, ef�ciency, bias, and
robustness (Lehmann, 1983). An estimator
is consistent if it converges to the true pa-
rameter in the limit of in�nite data. It is un-
biased if its average value across samples
is centered on the true parameter. It is ef-
�cient if the variance of those sample esti-
mates converges to a theoretical minimum
value and is thus as good as or better than
other estimators. It is robust if any or all
of these properties hold under wide vari-
ety of sampling distributions. Phylogenetic
theory has revealed much about consis-
tency but relatively little about ef�ciency or
bias, and almost nothing about robustness—
a rather upside-down state of affairs, given
that phylogeneticists work with �nite data
sets and unknown sample distributions. Sim-
ulation studies have addressed more of these
criteria, but the results are mixed, as we dis-
cuss below.

Theoretical Arguments

Theoretical arguments about likelihood’s
superiority over other methods have two
shortcomings. First, some have taken the
form of unproven assertions about the phy-
logeny problem, based on general properties
of likelihood theory. Second, they have of-
ten referred to large-sample or “asymptotic”
properties (Goldman, 1990:347; Gaut and
Lewis, 1995:152; Swofford et al., 1996:430)
such as consistency, asymptotic ef�ciency,
and convergence to well-known distribu-
tions, which are “weak” properties, not di-
rectly relevant to �nite data sets (Felsenstein
and Sober, 1986:625). Unfortunately, in �-
nite samples, even standard ML estimators
are not guaranteed to be either unbiased or
to have less variance than other estimators.
In addition, much of the standard asymp-
totic theory for likelihood estimators does
not apply to phylogenetic estimators (Yang,
1994a).

After Felsenstein’s (1978) demonstration
that parsimony methods could be inconsis-
tent, likelihood methods were widely spec-
ulated to be consistent (Felsenstein, 1988;
Yang, 1996a; Sullivan and Swofford, 1997)
and hence “superior” by this criterion, be-
cause all ML estimators are consistent as
long as certain assumptions are met (Wald’s
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conditions as discussed in Schervish, 1995).
Nevertheless, the consistency of ML wasonly
recently proven for the standard Markov
chain model (Chang, 1996a) and still re-
mains to be proven for some popular mod-
els such as the gamma-distributed mixture
model (Yang, 1996b). In many cases, the ques-
tion is whether tree topologies are “iden-
ti�able” or not (identi�ability is essentially
Wald’s second condition). A tree topology
under a given model is not identi�able if
different trees can generate the same sam-
pling distribution of the datasets. In this case,
no method can correctly estimate the right
tree, regardless of the sample size. Proofs
and examples show that this situation can
often arise when models become complex,
especially with rate variation across sites
(e.g., Steel et al., 1994; Chang, 1996b; Bakke
and von Haeseler, 1999). Therefore, statistical
consistency cannot be assumed for even the
ML estimator when the models become more
“realistic.” Certainly models can be con-
structed in which ML is consistent and other
methods are not, but the as yet unanswered
question is how methods perform across a
much richer family of more complex models
that provide better approximations to under-
lying “truth” than do those tested heretofore
(see below, Model Selection).

Asymptotic ef�ciency is also a general
property of (some) likelihood methods that
has never been proven for tree inference.
An estimator is asymptotically ef�cient if
it has the least variance theoretically possi-
ble for any estimator. However, an estima-
tor can not be a minimum variance estimator
for all parameter values without some ad-
ditional constraints. For example, the com-
parison of variance of estimators is usually
restricted to the class of unbiased estima-
tors. Unfortunately, a clear notion of unbi-
asedness has been wanting for phylogenetic
estimators, because it requires the concept
of an expectation over trees. This techni-
cal problem might be solved by using me-
dian trees (Page, 1996) or some other con-
struct that allows algebraic summation of
tree topologies appropriately. A more seri-
ous problem is that even within the class
of unbiased or consistent estimators, it is
dif�cult to establish a satisfactory notion of
an estimator with least variance. If we con-
strain ourselves to the large class of esti-
mators that converge in distribution to the
normal (gaussian) distribution, a criterion

for minimum variance estimator can be de-
�ned. Many asymptotically normal ML esti-
mators (but not all) achieve this lower bound
and can be considered asymptotically ef-
�cient. However, these notions cannot be
applied to phylogenetic estimators (Yang,
1996a). More importantly, the distribution
of the estimates based on various phyloge-
netic estimation methods such as maximum
parsimony, additive trees, and so forth do
not converge to the same family of distribu-
tions; therefore, a notion of asymptotic ef�-
ciency or even of relative ef�ciency becomes
meaningless.

Simulation and Empirical Studies

Based on simulation studies some work-
ers have suggested that ML methods pro-
duce more accurate trees than do other meth-
ods (Kuhner and Felsenstein, 1994; Tateno
et al., 1994; Yang et al., 1994:316; Swofford
et al., 1996:430; Huelsenbeck, 1998:532).
Other workers disagree (e.g., Russo et al.,
1996), and few assertions about the superi-
ority of one method have gone unchallenged
by advocates of another (see, e.g., Hillis et al.,
1994 vs. Nei et al., 1995, Russo et al., 1996, or
the general critique by Siddall, 1998). This
has made it dif�cult to extract general con-
clusions from the large literature on perfor-
mance simulations (e.g., Lewis, 1998a).

Because a natural criticism of the pur-
ported performance advantages of ML is that
it is contingenton thecorrectmodel, there has
been considerable interest in its robustness.
Although many authors have suggested,
based on simulation evidence, that likeli-
hood inference is robust to model misspeci�-
cation (Fukami-Kobayashi and Tateno, 1991;
Yang et al., 1994; Gaut and Lewis, 1995;
Huelsenbeck, 1995; Tillier and Collins, 1995;
however, see Nei, 1991; Rzhetsky and Sit-
nikova, 1996), Yang (1997) identi�ed cases
in which inference using the wrong model
actually produced better trees than that us-
ing the right model for �nite-sized data
sets. Russo et al. (1996) found the some-
what more neutral result that simple mod-
els performed as well as more parameter-
rich models. Evidently the connection
between model validity and tree accuracy is
quite complex (Gaut and Lewis, 1995; Yang,
1997; Bruno and Halpern, 1999; Krajewski
et al., 1999), which leads into the general sta-
tistical issue of model selection.
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MODEL SELECTION

Justi�cations of ML in phylogenetics run
into an important conundrum. If one of
the main reasons to use ML is that it per-
mits incorporation of important background
knowledge about molecular evolution (e.g.,
Fukami-Kobayashi and Tateno, 1991:79;
Hulesenbeck and Crandall, 1997:449; Lewis,
1998a:161) , then, logically, there ought to be
some relationship between model validity
and accuracy of tree reconstruction. If, on the
other hand, it turns out that model validity
is not as important as one might expect (or
more charitably, if ML is highly “robust”),
then one must conclude that a strong signal
present in data is more or less independent
of inference models and that, therefore, many
methods can be expected to work well—not
just ML. In this section, we pursue this argu-
ment in more detail, using both theoretical
and empirical arguments.

Model Selection in Theory

Models of molecular evolution used in
likelihood inference have been getting more
complicated and realistic (Schöniger and
von Haeseler, 1994; Tillier and Collins, 1995;
Yang, 1996b; Huelsenbeck and Crandall,
1997; Goldman et al., 1998; Thorne et al., 1998;
see also review in Swofford et al., 1996) since
they were �rst applied to molecular data
(e.g., Neyman, 1971). Consequently, they
have become more numerous as well, rais-
ing the general issue of model “selection” or
model “choice”. Huelsenbeck and Rannala
(1997:230) argue that a great strength of like-
lihood is its ability to eliminate “much of the
arbitrary nature of model choice” by select-
ing the “tree associated with the best �tting
[i.e., highest likelihood] model”. Sullivan
and Swofford (1997) echo this point by say-
ing, “a major advantage of likelihood rela-
tive to parsimony or distance methods is that
the likelihood score provides an objective
criterion of goodness-of-�t between model
and data that is comparable across models.
Under parsimony, the optimality criterion
(tree length) is not directly comparable across
weighting schemes. . .” (p. 79). These state-
ments are not incorrect, but the selection of
thebest-�tting model raises fundamental sta-
tistical issues even in a likelihood context
(Buckland et al., 1997).

This general issue of model selection in
statistics has received much attention re-

cently (see Burnham and Anderson, 1998, for
a readable introduction). The starting point is
the notion that reality—the “true model”—
is a complex entity with a very large num-
ber of parameters. The task of model selec-
tion is to choose from a set of candidates
a best-approximating model and make in-
ferences conditional on it, or, more gener-
ally, to perform estimation unconditionally
across a set of such reasonable models, per-
haps by weighting the estimates by some
measure of model informativeness. This has
to be done in recognition, however, of the fre-
quent tradeoff between bias and error vari-
ance associated with under�tting or over�t-
ting a model to data, respectively (Burnham
and Anderson, 1998:21).

In molecular phylogenetics, an immedi-
ate concern is the number of possible mod-
els of the molecular evolutionary process.
The number of models increases combinato-
rially with the number of parameters. For K
parameters, the number of models is given
(minimally) by the number of possible sub-
sets of a set of K distinct elements (Bogart,
1990), a number that grows very fast with
K. Considering only the K = 6 parameters in
symmetric substitution rate matrices for nu-
cleotide data, allows for 203 possible mod-
els (and PAUP ¤ 4.0 provides the user the
�exibility to try any of them). Biological in-
tuition and the application of background
knowledge are almost always needed to re-
strict attention to a smaller number of candi-
date models (Burnham and Anderson, 1998).
However, this may be especially dif�cult
with phylogenetic data because of the com-
plexity of molecular substitution processes,
which means it may be time-consuming to
sort through a model space in which a large
number of models are “reasonable”.

Were only a moderate number of models
available for testing, there would still be un-
resolved questionsabouthow models should
be selected. A typical approach to hypothe-
sis testing in phylogenetics is to test progres-
sively more complex models in a stepwise
fashion until a suf�ciently complex one is
found that no longer substantially improves
goodness of �t (Yang, 1994b; Cunningham
et al., 1998). This shares all the pitfalls as-
sociated with model selection in stepwise
multiple regression, including the need for
correction for multiple tests, choices between
sequential addition or removal of parame-
ters from models, and sensitivity to the order
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in which are added (Miller, 1990). For exam-
ple, Cunningham et al. (1998) observed that
the order in which parameters were added
to molecular substitution models affected the
�nal decisions about which �t the data best.

Information theory provides an alterna-
tive to standard hypothesis testing in model
selection. Any set of candidate models can
be ranked according to the Akaike Informa-
tion Criterion (AIC, or modi�cations thereof)
for each. The AIC is an estimate of the
expected relative difference in informative-
ness of two models, compared with that of
the “true underlying model” (where “in-
formation” is measured by the Kullback–
Leibler information statistic; see Cover and
Thomas, 1991). The AIC is basically the log
likelihood of a model, with penalties for
the number of parameters. Once selected,
the most-informative model can then be
used (conditionally) in subsequent analyses
(Kishino and Hasegawa, 1989; Posada and
Crandall, 1998).

However, this does not get around the
problem of sorting through a potentially
large number of models, and inference about
the tree that is not conditional on a model
is more complex still. If the rank-order like-
lihoods of different models is different on
different trees (see Fig. 1 for an example,
or Sullivan and Swofford, 1997, but also see
Maddison et al., 1999, for a counterexample),
it is necessary to estimate models and trees
simultaneously, a computationally chilling
prospect. Familiar tools such as the likeli-
hood ratio test break down because the rel-
evant distribution of the test statistic is not
obvious (Felsenstein, 1983:253; Reeves, 1992;
Goldman, 1993), which forces the user to im-
plement parametric bootstrap tests, if that
is possible (Goldman, 1993), or to fall back
again on the AIC, which can be used even
if the number of parameters is the same as
in comparisons between tree topologies. The
number of models is now related to the num-
ber of trees, which may be vast, necessitating
some possibly arbitrary criterion for exclud-
ing those with scores that are just too low
relative to that of the best-supported model.
The task of estimating the tree might then
come down to using many different models
and then constructing a composite solution
by weighting the resulting tree estimates by
the AIC or likelihood score (Buckland et al.,
1997; see Jermiin et al., 1997, for a phyloge-
netic example). Needless to say, even if the

FIGURE 1. Lack of monotonicity in likelihood scores
under two different models of molecular evolution. The
data set consisted of 37 complete sequences of the plastid
rbcL gene sampled across land plants. Each data point
represents one tree from the bootstrap con�dence set
for this data set. Log likelihoods under the GTR and
HKY85 + C model are indicated (estimated in PAUP ¤

4.0b2; Swofford, 1999). Ideally the likelihood scores un-
der the two models should show a monotonic relation-
ship in which the rank order of the likelihoods would
be the same. This would guarantee that a hill-climbing
algorithm for �nding the optimal tree under one model
would �nd the same tree under another model. How-
ever, for these data, many pairs of trees exist in which
one tree has a higher likelihood under one model but a
lower likelihood under the other model.

models are few, the computational burden in
this version of the phylogeny problem will
be prohibitive.

Model Selection in Real Data

A more immediate question is empirical:
How many parameters are necessary to ob-
tain a good approximation to the processes of
molecular evolution modeled in parametric
tree inference? In other words, are the models
currently in use good approximations of the
“truth”? If a good approximation to reality
is not contained among the set of candidate
models, then the model that is chosen will
be taken as the true model simply because
it is closest to the true one (Buckland et al.,
1997)—meaning it may be the “best” model
but not very good. For example, all models
tested by current software packages assume
a Poisson substitution process, but some evi-
dence suggests that overdispersed point pro-
cesses �t the data better (Gillespie, 1991).

A telltale sign of inadequate models might
be large differences in likelihoods or in AIC
scores between the best model and the next-
best model when the latter is only slightly
less complex. This situation, in which one
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would suspect there is considerable room
for model improvement, seems to describe
many real phylogenetic data sets. Goldman
(1993) rejected several simple models in fa-
vor of a very general multinomial model in
most cases, except for small clocklike data
set of six w g -globin sequences. Yang et al.
(1994) rejected models without site-to-site
variation in favor of those with such varia-
tion in �ve out of �ve data sets, in addition
to rejecting simple substitution models in fa-
vor of a Hasegawa–Kishino–Yano (HKY85)
model. Sullivan and Swofford (1997) ex-
amined rodent monophyly with 16 mod-
els in which all pairwise combinations of
Jukes–Cantor (JC), Kimura two-parameter
(K2P), HKY85 and general time reversible
(GTR) substitution models were used with
“equal rates”, I (some fraction of invari-
ant sites), C (gamma-distributed rate vari-
ation), and I + C models of rate variation
across sites. The model with the greatest
likelihood was the model with the most
parameters, and the likelihood values sug-
gest that almost all of the possible pairwise
likelihood ratio tests would lead the inves-
tigator to conclude that the more complex
model was markedly better than the less
complex model. AIC values would simi-
larly suggest large gaps between models in
informativeness. Huelsenbeck and Crandall
(1997) found the same result in an albumin
data set for vertebrates.

To be fair, these �ndings are not univer-
sal. Yang (1994b) found the HKY + C model
to be just as good as the REV (GTR) + C
model in one data set but rejected it in an-
other. Cunningham et al. (1998) found a case
in which the HKY model �t the data as well
as the more parameter-rich GTR model, but
this result depended on whether site-to-site
variation was added as a parameter before
or after the number of substitutional classes
was changed. However, we think that the
pattern observed in real phylogenetic data
sets of more than a handful of taxa generally
points towards maximal complexity within
parametric model families. To return to our
basic argument, likelihood-based inference
might still be accurate even if the model is
wrong, but at least the argument that the
correct model leads to the correct inference
(“truth follows from truth”) can no longer be
made under those circumstances. Moreover,
it opens the door to the possibility that many
other methods that rely either on poor mod-

els or no models at all, might give equally
accurate estimates of trees.

COMPUTATIONAL COMPLEXITY

Although it has been widely recognized
that ML methods require more computa-
tional effort than parsimony or many other
methods, an emerging view is that ML is now
becoming computationally feasible with the
advent of powerful new computer archi-
tectures and improved software (Adachi
and Hasegawa, 1996:75; Huelsenbeck and
Crandall, 1997:450; Schadt et al., 1998:225).
Clearly, hardware improvements have dra-
matically shortened the running time of all
algorithms, perhaps by two to three orders
of magnitude in the last 10–15 years, but we
argue that these improvements still fall short,
given the fundamental complexity of tree es-
timation with the data sets commonly of in-
terest today.

Optimization-based tree algorithms such
as parsimony, likelihood, and additive dis-
tance methods consist of an outer loop that
searches among trees (generally a subset of
all possible trees) and an inner loop that cal-
culates the value of the objective function
(e.g., parsimony length, or likelihood) on a
given tree across all characters in the datama-
trix. No algorithms are known to guarantee
discovery of the optimal tree in the outer loop
phase in anything less than the worst-case of
exponentially increasing time as a function
of number of taxa (in the language of algo-
rithm theory, this is said to be NP-hard; Garey
and Johnson, 1979). Practically speaking, this
means that approximate heuristic searches
(which require only polynomially increasing
amounts of time) must be invoked when the
number of taxa exceeds » 20. All of the algo-
rithms with global objective functions—ML,
maximum parsimony, additive trees, and so
forth—share the same computational prob-
lem of searching through the possible tree
topologies. (However, rigorous proofs of NP-
hard complexity are not available for all such
algorithms.)

On the other hand, how each algorithm
optimizes the objective function over ancil-
lary parameter values for a given tree, that
is, the inner loop, differs in computational
complexity. The inner loop of parsimony
algorithms can be accomplished very ef-
�ciently in time linearly proportional to
the number of taxa (e.g., by way of the
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Fitch–Hartigan algorithm for nucleotide
data). This is also guaranteed to provide
the global optimum and exact value on the
given tree. In contrast, the inner loop of
a conventional (hill-climbing) likelihood
algorithm, which requires multivariate
numerical optimization of branch lengths
and estimation of rate parameters, is ex-
tremely time-intensive and guaranteed
to only �nd the local optimum. For an
N-dimensional numerical optimization pro-
blem, the best algorithms perform on the
order of N2 function (or partial derivative
function) evaluations for the best-case
scenario of a quadratic form. For generally
smooth functions such as the log-likelihood
function, we can expect N3 convergence to
a local optimum (Press et al., 1988). If we
start suf�ciently near a local optimum, any
smooth function is approximately quadratic
in form and we can also achieve N2 conver-
gence. Suppose we have a n-taxon tree and
we use a k-parameter model of character
evolution (e.g., for the K2P model we have
k = 2), then the total number of dimensions
for the numerical optimization problem is
(2n ¡ 3)k. Therefore, for a n-taxon tree we
expect the maximum parsimony algorithm
to �nd the optimal objective function value
on the order of C pn time, where C p is dom-
inated by the cost of evaluating the optimal
state assignment of an internal node. On
the other hand, ML for a n-taxon tree will
�nd a local optimum on the order of Cmn3

time or Cmn2 time, where Cm is dominated
by the cost of evaluating the log-likelihood
function, which is considerably greater than
that for C p (especially when rate mixture
models are used). Therefore, for a n-taxon
tree we should expect ML method to take
on the order of Cn2 or Cn (if we can use
heuristics such as parsimony to get a good
starting point; Rogers and Swofford, 1998)
times longer than maximum parsimony,
where C is a large number that changes with
the complexity of the likelihood model.

Empirical observations on computer run-
ning times bear this out. Running times are
best measured on a relative scale. Hardware
improvements will not change the ratio of
the running times of a likelihood run rela-
tive to a parsimony run. Evidence suggests
that the heuristic approximation does allow
quadratic convergence (Fig. 2), but the factor
C is approximately 1,000 for this class of mod-

FIGURE 2. Relative running times for maximum
likelihood (ML) versus maximum parsimony (MP)
as a function of number of taxa. Each point is the
average of two replicated simulations. Simulations
used the program r8s (Sanderson, 1997; available
from http://loco/ucdavis.edu/r8s/r8s.html) to gener-
ate trees according to a Yule model of diversi�cation
and Seq-Gen (Rambaut and Grassly, 1997) to generate
sequence according to an F84 (Swofford et al., 1996)
model with gamma-distributed rates ( a = 0.5). Simu-
lated sequence divergences were quite high on average
( » 0.5–1.0 substitutions/site), making these reasonably
“noisy” data sets. The initial trees had 250 taxa and were
subsequently pruned randomly to yield trees of the nec-
essary size.

els. Other cursory experiments seem to sug-
gest that C ranges from 1,000 to 100,000, de-
pending on the model complexity and data.
For example, Maddison et al. (1999) esti-
mated that in a data set of 99 18S rDNA se-
quences of Carabid beetles, likelihood meth-
ods would have required 300 years to run on
the same computer if performing the same
kinds of search that was undertaken with
parsimony.

Besides the computational time problem,
multiple optima for the parameter estimates
(branch lengths, rates, etc.) may exist on
any given candidate tree. Tillier (1994) has
suggested model conditions guaranteeing a
single optimum, but Rogers and Swofford
(1998) found multiple optima on the same
tree, and Steel (1994) constructed at least one
such case in a four-taxon tree, which sug-
gests that these conditions are not dif�cult
to violate. In fact, given that the likelihood
functions for usual models of character evo-
lution are not convex functions, this situation
should be commonplace and could often
prevent standard hill-climbing algorithms
from �nding the global optimum. Rogers
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and Swofford (1999) did �nd that multiple
optima were rare on trees that were nearly
correct, but they were much more common
on other trees. The latter could therefore
pose substantial impediments to search algo-
rithms, because if the supposed (maximum)
likelihood for one candidate tree is not the
true ML for that tree (because it is only a
local solution), then comparisons of likeli-
hoods between trees will be misleading.

A positive spin on these numbers is that
hardware improvements now permit users
to undertake likelihood analyses with a sim-
ple model for some data sets in the same
amount of time as parsimony runs took only
15 years ago. The chances of this trend con-
tinuing are nil, however, because the bar has
been raised by the accumulation of much
larger numbers of homologous sequences.
Källersjö et al. (1998) undertook a parsimony
analysis of >2,500 sequences of the rbcL gene
across plants, using crude heuristic searches,
and nearly 10,000 small subunit rRNA se-
quences were reported in the latest release
of the RDP II database (Rijk et al., 1998).

On the other hand, an unknown factor may
interact with the above analysis. As men-
tioned, all global objective function methods
have an outer loop evaluating tree topolo-
gies. Even a moderate number of taxa forces
the use of heuristic searches over the tree
topologies. The ef�ciency (and accuracy) of
heuristic searches depends on the objective
function’s “landscape”, that is, how the func-
tion value (say, likelihood score orparsimony
length) changes with respect to tree topolo-
gies. A “nice” landscape looks like a large
upside-down funnel in which every heuris-
tic search quickly converges “up” the funnel
to the global optimum. A “bad” landscape
looks like a wide, �at plain with one or more
extremely narrow spikes of different heights.
Any heuristic search is forced to wander all
over the plain until it is lucky enough to hit
that single highest spike. We do not know
whether different objective functions such as
ML and maximum parsimony have quali-
tatively different functional landscapes for
the same data set. Empirical investigations
seem to suggest that the maximum parsi-
mony landscape is not particularly “nice”
(J. Kim, unpublished data); we do not have
any information on ML functions, but anec-
dotal evidence suggest that they are not qual-
itatively different from maximum parsimony
functions.

Compared with many algorithms, ML is
still computationally slow. Use of something
like parsimony rather than likelihood would
free a considerable amount of computer time
for other aspects of tree building. Here are
three: In the time taken to run one com-
plete likelihood search in the rbcL data set
described above, one could examine using
parsimony on the order of 1,000 £ 2,500 =
2.5 million bootstrap replicates, perform
2.5 million random additions to search for
multiple tree islands, or begin 2.5 million
completely random starts to look for multiple
optima in tree topologies. (In fact, the likeli-
hood estimate is practically uncomputable,
because if parsimony takes just a day for
this data set the likelihood computation will
take » 7,000 years.) Of course, using more
approximate heuristics such as neighbor-
joining (Saitou and Nei, 1987) would allow
even more possibilities.

Hillis (1996) argued that the mere addi-
tion of data might dramatically ameliorate
the known worst-case computational com-
plexity of tree inference methods that use
both parsimony and likelihood. Data may
be added as new characters (e.g., additional
genes for the same set of taxa) or new taxa
(for the same set of characters). Indeed, the
addition of characters can help smooth the
surface of the objective function, sharpen
the gradient, and reduce the number of
multiple optima. This can decrease running
times dramatically, as shown when three
genes were combined in a large data set on
plants (Hillis, 1996; Soltis et al., 1998). How-
ever, the scaling relations described above,
that is, ML being slower by a factor of
1,000t, were obtained under best-case scenar-
ios (smooth functions very close to local op-
timum), which do not change with addition
of data. Because these data sets had so many
taxa to begin with (>200), Hillis (1996) sug-
gested that addition of taxa could also lead to
de�nite decreases in running time, although
it was not clear whether this happens even if
the number of characters stays the same. Re-
gardless, the addition of taxa may change the
characteristics of the search through different
tree topologies, but it cannot fundamentally
change the nature of the numerical optimiza-
tion problem for a given tree.

In summary, given the scaling relation-
ship of the computational complexity of the
ML method, we suggest that no reasonable
hardware/software improvements such as
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parallel processing supercomputers, DNA
computers (Adleman, 1998), or new meth-
ods such as neural networks (Dopazo and
Carazo, 1997) or genetic algorithms (Lewis,
1998b) will allow practical computation of
likelihood methods for large data sets, at
least not in the near term. (For an opti-
mistic C = 1,000 and, say a, 100-taxon data
set, we would need at least a 105-fold im-
provement in performance. At present, ex-
otic super computers such as the 256 proces-
sor Silicon Graphics Origin 2000 have only
» 5,000-fold performance advantage over a
Pentium III 600 MHz machine.) The desir-
ability of assessing con�dence in clades does
not diminish in large data sets, but inves-
tigators’ patience waiting for bootstrap or
jackknife results might. Likewise, we can ex-
pect more problems with multiple islands
of equally optimal trees and multiple lo-
cal optima as data set complexity (e.g., ho-
moplasy) increases. Given the differences
between the running times of likelihood
versus those of other faster methods, it is in-
evitable that workers will search tree space
less exaustively. At some point, even if like-
lihood were a more accurate method than other
methods on average, heuristic shortcuts and
their failure to converge on the optimal tree
may lead to superior performance of faster
methods.

DISCUSSION

In contrast to the view that statistical in-
ference has little or no role to play in phy-
logenetic inference (Wenzel and Carpenter,
1994; Siddall and Kluge, 1997; Kitching et al.,
1998:118; Siddall and Whiting, 1999), we be-
lieve statistical viewpoints have greatly con-
tributed to establishing a common language
of discourse and a consistent framework of
analysis of properties of phylogenetic meth-
ods. Our main point is that, even from within
a statistical inference framework, there are
good reasons to pursue alternative methods
of tree inference than the likelihood methods
now being widely discussed.

Estimation is an inductive rather than de-
ductive process. Therefore, there are no rules
of deductive logic that are applicable in the
construction of estimators, even when we
are working within the formal framework
of probability and statistics. Thus, theoreti-
cal statistics textbooks outline many differ-
ent methods of estimator construction such

as least-squares, method of moments, likeli-
hood, and decision theoretic cost functions.
All of these are to some extent ad hoc; the
value of one estimator versus another is de-
rived from a posteriori examination of a set of
criteria thought to embody desirable proper-
ties, such as unbiasedness, consistency, small
variance, and so forth. Performance with re-
spect to these a posteriori criteria is not guar-
anteed by the adoption of any of the a priori
principles of estimator construction.

Within the logical and technical bound-
aries of statistical inference, likelihood may
just be the wrong statistical tool for the
job. “Statistics” and “likelihood” are by no
means synonymous, and there are many ap-
proaches to inferring trees that fall within a
statistical framework—just as there are many
ways to estimate parameters in simple sta-
tistical problems in addition to ML. For ex-
ample, various distance methods based on
the general additive path length principle
(Waterman et al., 1977), such as least squares
or minimum evolution (Rzhetsky and Nei,
1993), are all parametric statistical meth-
ods when used in conjunction with “correc-
tion factors”, which are nothing more than
distance estimators based on a parametric
continuous-time Markov model of character
evolution.

More recently, a more diverse set of esti-
mation principles has been applied in phy-
logeny estimation, in which the dependence
on a narrow set of parametric models has
been relaxed. For example, Bayesian ap-
proaches to tree building (Larget and Simon,
1999) essentially use prior distributions to ex-
pand the family of models. Decision theo-
retic estimation criteria such as the notion of
“risk” provide a more generalized set of prin-
ciples for estimator construction that have
been used to develop concepts such as robust
estimators (Huber, 1981; Lehmann, 1983), but
to our knowledge none has been applied to
phylogenetic estimation.

However, another class of statistical infer-
ence methods involves nonparametric meth-
ods. Nonparametric methods either assume
an in�nite-dimensional parameter space (in
the sense that every observation has a unique
distribution) or a very broad family of distri-
butions with an identically distributed statis-
tic (commonly the order statistic) that can
be used for robust inference. When the sam-
pling distribution of the data is complex, per-
haps with nearly a unique set of parameters
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for each character, nonparametric methods
may be much more appropriate than para-
metric ones such as ML. Some nonparamet-
ric techniques are quite well understood,
and exact statements can be made about
their properties and performance. Others
are more ad hoc, just as some phyloge-
netic methods are. Certain nonparametic
regression techniques, for example, seem jus-
ti�ed ononly the vaguestof grounds (Härdle,
1990). According to Wolfowitz (1942; cited
in Noether, 1967), parametric methods are
of use when the quantity of data exceeds
the complexity of the underlying distribu-
tion (data À parameters), whereas nonpara-
metric methods are better when the complex-
ity of the distribution exceeds the amount
of data available (parameters À data). (Simi-
lar statements have been made for Bayesean
methods.) Our reading of the literature on the
goodness of �t of substitution models to data
suggests that, at the very least, many more
parameters often are needed for the data at
hand, suggesting that phylogenetic inference
could well be a case in which parameters
outstrip data. Ironically, because models of
molecular evolution seem to be drawn into
an increasingly parameter-rich realm very
quickly, they are headed in the direction of
nonparametric inference, at least formally,
but they often lack the latter’s simplicity or
computational ef�ciency.

What, precisely, constitutes a nonparamet-
ric method in phylogenetics? Statisticians
themselves disagree over the de�nition of
nonparametric methods, because these are a
very heterogeneous set of techniques (e.g.,
Noether, 1967); as mentioned, however, a
common de�nition is that they are methods
applied in cases in which no speci�c dis-
tribution of the data under some paramet-
ric model is assumed (or at worst, a very
weak set of constraints on this distribution
is assumed). Tuf�ey and Steel (1997) recently
showed that maximum parsimony is the
nonparametric ML estimator under a model
with separate parameters for each character
and branch. It is, of course, now well under-
stood that parsimony under this model can
be inconsistent, but the real question is one
of relative performance in �nite data sets. (M.
Steel has pointed out in personal communi-
cation the interesting phenomenon here in
which computational complexity increases
with the number of parameters but sud-
denly drops when maximum number of pa-
rameters is used.) More recently, other non-

parametric ML estimators have been devel-
oped for ultrametric trees (K. Atteson, pers.
comm.). Advocacy of nonparametric meth-
ods in phylogenetics is hardly a new idea.
Felsenstein (1978:195) pointed out that the
need for robustness “may be met in the future
by development of appropriate nonparamet-
ric statistical methods for inferring phyloge-
nies”, but cautioned that “However methods
are developed, they must be analyzed by sta-
tistical criteria if we are to know the limits of
their applicability”. We agree with this state-
ment. Recent analyses of parsimony with use
of statistical criteria are important contribu-
tions, and whether the maximum parsimony
method is the most optimal nonparametric
method is certainly far from clear. In prac-
tice, however, maximum parsimony seems
to be a reasonable nonparametric estimator
deserving further scrutiny.

All methods, including those that are
not overtly model-based, can be analyzed
within a statistical framework and on that
level be considered “statistically valid”. They
may or may not be good approximations to
“correct” parametric inference procedures,
but that hardly matters, given that the prop-
erties of any procedure are rarely optimal.
No method, including ML, has automatic
optimal performance because of its statis-
tical pedigree—hence the diversity of ap-
proaches to estimation in the statistical litera-
ture (Barnett, 1999). Performance of amethod
may or may not fall short of others in any
given case, and therefore more studies of rel-
ative performance are needed across a broad
spectrum of evolutionary models.

To date, the dimensionality of models used
in performance studies has probably been
too low to re�ect the evolutionary process
adequately, thus stacking the deck against
nonparametric methods in comparisons us-
ing models that are exactly ornearly the same
as those assumed by the parametric inference
methods (differing by at most a few parame-
ters). A proper evaluation of the performance
of alternative methods should begin with
a generating model that is highly complex,
more complex than any of the models being
tested (Burnham and Anderson, 1998:121).
Recent �ndings suggest that elements of the
substitution rate matrix, such as the tran-
sition/transversion ratio, evolve over time
(Huelsenbeck and Nielsen, 1999), lineage
rates may vary in autocorrelated ways across
the tree (Sanderson, 1997; Thorne et al.,
1998), and substitution processes may not
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be stationary (e.g., Lewis et al., 1997). These
are just three examples of elements of the
evolutionary process that are not accounted
for in current models used in performance
evaluations. Comparing the performances
of methods under high-dimensional mod-
els that take these and other factors into ac-
count may well be illuminating. Ultimately,
however, we suspect that the search for bet-
ter and better models of evolution may be a
sort of Holy Grail, which, although revealing
something about molecular evolution, will
be largely distracting to the task of building
good trees. On the bright side, congruence of
independent lines of evidence suggests that
tremendous strides have been made in recent
decades using phylogenetic methods proper-
ties are not yet completely understood within
the statistical paradigm.
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pose another method to assess support under
parsimony analysis, using a combination of
multiple converse constraints and Templeton
tests. A similar method proposed recently for
evaluating support for maximum likelihood
trees is also brie�y discussed.

Nonparametric bootstrapping (Felsen-
stein, 1985a) is the technique most widely
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